Advertisement

Journal of High Energy Physics

, 2015:171 | Cite as

Improved determination of sterile neutrino dark matter spectrum

  • J. Ghiglieri
  • M. LaineEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.

Keywords

Cosmology of Theories beyond the SM Thermal Field Theory Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    E.K. Akhmedov, V.A. Rubakov and A.Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  4. [4]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].ADSGoogle Scholar
  6. [6]
    K.N. Abazajian, Resonantly Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites, Phys. Rev. Lett. 112 (2014) 161303 [arXiv:1403.0954] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M.R. Lovell, C.S. Frenk, V.R. Eke, A. Jenkins, L. Gao and T. Theuns, The properties of warm dark matter haloes, Mon. Not. Roy. Astron. Soc. 439 (2014) 300 [arXiv:1308.1399] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    U. Maio and M. Viel, The First Billion Years of a Warm Dark Matter Universe, Mon. Not. Roy. Astron. Soc. 446 (2015) 2760 [arXiv:1409.6718] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    A. Harada, A. Kamada and N. Yoshida, Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure, arXiv:1412.1592 [INSPIRE].
  15. [15]
    A.D. Dolgov, S.H. Hansen, S. Pastor, S.T. Petcov, G.G. Raffelt and D.V. Semikoz, Cosmological bounds on neutrino degeneracy improved by flavor oscillations, Nucl. Phys. B 632 (2002) 363 [hep-ph/0201287] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    Y.Y.Y. Wong, Analytical treatment of neutrino asymmetry equilibration from flavor oscillations in the early universe, Phys. Rev. D 66 (2002) 025015 [hep-ph/0203180] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Towards a kinetic theory for fermions with quantum coherence, Nucl. Phys. B 810 (2009) 389 [arXiv:0807.1415] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    D. Bödeker and M. Laine, Kubo relations and radiative corrections for lepton number washout, JCAP 05 (2014) 041 [arXiv:1403.2755] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    D. Bödeker and M. Sangel, Order g 2 susceptibilities in the symmetric phase of the Standard Model, JCAP 04 (2015) 040 [arXiv:1501.03151] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    S.Y. Khlebnikov and M.E. Shaposhnikov, Melting of the Higgs vacuum: Conserved numbers at high temperature, Phys. Lett. B 387 (1996) 817 [hep-ph/9607386] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Vuorinen, Quark number susceptibilities of hot QCD up to g 6 ln g, Phys. Rev. D 67 (2003) 074032 [hep-ph/0212283] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Bellwied et al., Fluctuations and correlations in high temperature QCD, arXiv:1507.04627 [INSPIRE].
  24. [24]
    H.T. Ding, S. Mukherjee, H. Ohno, P. Petreczky and H.P. Schadler, Diagonal and off-diagonal quark number susceptibilities at high temperatures, Phys. Rev. D 92 (2015) 074043 [arXiv:1507.06637] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H.A. Weldon, Effective Fermion Masses of O(gT ) in High Temperature Gauge Theories with Exact Chiral Invariance, Phys. Rev. D 26 (1982) 2789 [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Nötzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307 (1988) 924 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    T. Asaka, M. Laine and M. Shaposhnikov, Lightest sterile neutrino abundance within the νMSM, JHEP 01 (2007) 091 [Erratum ibid. 02 (2015) 028] [hep-ph/0612182] [INSPIRE] and online at http://www.laine.itp.unibe.ch/neutrino-rate/.
  28. [28]
    M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE] and online at http://www.laine.itp.unibe.ch/eos06/.
  29. [29]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, Albert Einstein CenterUniversity of BernBernSwitzerland

Personalised recommendations