Journal of High Energy Physics

, 2015:159 | Cite as

Lattice study on QCD-like theory with exact center symmetry

  • Takumi IritaniEmail author
  • Etsuko Itou
  • Tatsuhiro Misumi
Open Access
Regular Article - Theoretical Physics


We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric SU(3) gauge theory with three fundamental Wilson quarks by twisting quark boundary conditions in a compact direction (Z 3-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 163 × 4 and 203 × 4 lattices along the line of constant physics realizing m PS /m V = 0.70. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the high-temperature phase. These results are consistent with the predictions based on the chiral effective model in the literature. Our approach could provide novel insights to the nonperturbative connection between the center and chiral properties.


Confinement Spontaneous Symmetry Breaking Lattice Gauge Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.B. Kogut et al., Deconfinement and chiral symmetry restoration at finite temperatures in SU(2) and SU(3) gauge theories, Phys. Rev. Lett. 50 (1983) 393 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Bazavov, An overview of (selected) recent results in finite-temperature lattice QCD, J. Phys. Conf. Ser. 446 (2013) 012011 [arXiv:1303.6294] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    Z. Fodor and S.D. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].
  4. [4]
    C. Gattringer, Linking confinement to spectral properties of the Dirac operator, Phys. Rev. Lett. 97 (2006) 032003 [hep-lat/0605018] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    F. Bruckmann, C. Gattringer and C. Hagen, Complete spectra of the Dirac operator and their relation to confinement, Phys. Lett. B 647 (2007) 56 [hep-lat/0612020] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    F. Synatschke, A. Wipf and C. Wozar, Spectral sums of the Dirac-Wilson operator and their relation to the Polyakov loop, Phys. Rev. D 75 (2007) 114003 [hep-lat/0703018] [INSPIRE].ADSGoogle Scholar
  7. [7]
    F. Synatschke, A. Wipf and K. Langfeld, Relation between chiral symmetry breaking and confinement in YM-theories, Phys. Rev. D 77 (2008) 114018 [arXiv:0803.0271] [INSPIRE].ADSGoogle Scholar
  8. [8]
    E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, Dual quark condensate and dressed Polyakov loops, Phys. Rev. D 77 (2008) 094007 [arXiv:0801.4051] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Gongyo, T. Iritani and H. Suganuma, Gauge-invariant formalism with a Dirac-mode expansion for confinement and chiral symmetry breaking, Phys. Rev. D 86 (2012) 034510 [arXiv:1202.4130] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Iritani and H. Suganuma, Lattice QCD analysis of the Polyakov loop in terms of Dirac eigenmodes, Prog. Theor. Exp. Phys. 2014 (2014) 033B03 [arXiv:1305.4049] [INSPIRE].
  11. [11]
    T.M. Doi, H. Suganuma and T. Iritani, Relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD, Phys. Rev. D 90 (2014) 094505 [arXiv:1405.1289] [INSPIRE].ADSGoogle Scholar
  12. [12]
    O. Miyamura, Chiral symmetry breaking in gauge fields dominated by monopoles on SU(2) lattices, Phys. Lett. B 353 (1995) 91 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    R.M. Woloshyn, Chiral symmetry breaking in Abelian projected SU(2) lattice gauge theory, Phys. Rev. D 51 (1995) 6411 [hep-lat/9503007] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Y. Hatta and K. Fukushima, Linking the chiral and deconfinement phase transitions, Phys. Rev. D 69 (2004) 097502 [hep-ph/0307068] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591 (2004) 277 [hep-ph/0310121] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    C. Ratti, S. Roessner, M.A. Thaler and W. Weise, Thermodynamics of the PNJL model, Eur. Phys. J. C 49 (2007) 213 [hep-ph/0609218] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    C. Sasaki, B. Friman and K. Redlich, Susceptibilities and the phase structure of a chiral model with Polyakov loops, Phys. Rev. D 75 (2007) 074013 [hep-ph/0611147] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77 (2008) 114028 [Erratum ibid. D 78 (2008) 039902] [arXiv:0803.3318] [INSPIRE].
  19. [19]
    F. Karsch and M. Lutgemeier, Deconfinement and chiral symmetry restoration in an SU(3) gauge theory with adjoint fermions, Nucl. Phys. B 550 (1999) 449 [hep-lat/9812023] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki and M. Yahiro, quark-gluon thermodynamics with the \( {Z}_{N_c} \) symmetry, J. Phys. G 39 (2012) 085010 [INSPIRE].
  21. [21]
    Y. Sakai, H. Kouno, T. Sasaki and M. Yahiro, The quarkyonic phase and the \( {Z}_{N_c} \) symmetry, Phys. Lett. B 718 (2013) 130 [arXiv:1204.0228] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Kouno, T. Makiyama, T. Sasaki, Y. Sakai and M. Yahiro, Confinement and Z 3 symmetry in three-flavor QCD, J. Phys. G 40 (2013) 095003 [arXiv:1301.4013] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    H. Kouno, T. Misumi, K. Kashiwa, T. Makiyama, T. Sasaki and M. Yahiro, Differences and similarities between fundamental and adjoint matters in SU(N) gauge theories, Phys. Rev. D 88 (2013) 016002 [arXiv:1304.3274] [INSPIRE].ADSGoogle Scholar
  24. [24]
    H. Kouno, K. Kashiwa, J. Takahashi, T. Misumi and M. Yahiro, Understanding of QCD at high density from Z 3 -symmetric QCD-like theory, arXiv:1504.07585 [INSPIRE].
  25. [25]
    R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Finite size test for the finite temperature chiral phase transition in lattice QCD, Phys. Rev. Lett. 65 (1990) 816 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].
  30. [30]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    L. Giusti, F. Rapuano, M. Talevi and A. Vladikas, The QCD chiral condensate from the lattice, Nucl. Phys. B 538 (1999) 249 [hep-lat/9807014] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    WHOT-QCD collaboration, T. Umeda et al., Thermodynamics in 2 + 1 flavor QCD with improved Wilson quarks by the fixed scale approach, PoS(LATTICE 2012)074 [arXiv:1212.1215] [INSPIRE].
  34. [34]
    M. Hayakawa, K.-I. Ishikawa, S. Takeda, M. Tomii and N. Yamada, Lattice study on quantum-mechanical dynamics of two-color QCD with six light flavors, Phys. Rev. D 88 (2013) 094506 [arXiv:1307.6696] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral symmetry on the lattice with Wilson fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    S. Itoh, Y. Iwasaki, Y. Oyanagi and T. Yoshie, Hadron spectrum in quenched QCD on a 123 × 24 lattice with renormalization group improved lattice SU(3) gauge action, Nucl. Phys. B 274 (1986) 33 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    S. Aoki, Phase structure of lattice QCD with Wilson fermion at finite temperature, Nucl. Phys. Proc. Suppl. 60A (1998) 206 [hep-lat/9707020] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    K. Nagata, in private communication, (2015).Google Scholar
  39. [39]
    H. Meyer, QCD at non-zero temperature from the lattice, plenary talk at Lattice2015, Kobe International Conference Center, Kobe Japan July 14–18 2015.Google Scholar
  40. [40]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    F. Bruckmann, Instanton constituents in the O(3) model at finite temperature, Phys. Rev. Lett. 100 (2008) 051602 [arXiv:0707.0775] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the CP N − 1 model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    S. Kratochvila and P. de Forcrand, QCD at zero baryon density and the Polyakov loop paradox, Phys. Rev. D 73 (2006) 114512 [hep-lat/0602005] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Takumi Iritani
    • 1
    Email author
  • Etsuko Itou
    • 2
  • Tatsuhiro Misumi
    • 3
    • 4
  1. 1.Department of Physics and AstronomyStony Brook UniversityStony BrookU.S.A.
  2. 2.KEK Theory Center, High Energy Accelerator Research Organization (KEK)TsukubaJapan
  3. 3.Department of Mathematical ScienceAkita UniversityAkitaJapan
  4. 4.Research and Education Center for Natural ScienceKeio UniversityYokohamaJapan

Personalised recommendations