Quartic AdS interactions in higher-spin gravity from Conformal Field Theory

Abstract

Clarifying the locality properties of higher-spin gravity is a pressing task, but notoriously difficult due to the absence of a weakly-coupled flat regime. The simplest non-trivial case where this question can be addressed is the quartic self-interaction of the AdS scalar field present in the higher-spin multiplet. We investigate this issue in the context of the holographic duality between the minimal bosonic higher-spin theory on AdS4 and the free O(N) vector model in three dimensions. In particular, we determine the exact explicit form of the derivative expansion of the bulk scalar quartic vertex. The quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of our previous results for the Witten diagrams of higher-spin exchanges. This is facilitated by establishing the conformal block expansions of both the boundary four-point function and the dual bulk Witten diagram amplitudes. We show that the vertex we find satisfies a generalised notion of locality.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic Interaction Terms for Arbitrary Spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    F.A. Berends, G.J.H. Burgers and H. Van Dam, On spin three selfinteractions, Z. Phys. C 24 (1984) 247 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  5. [5]

    E.S. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    R.R. Metsaev, Cubic interaction vertices of totally symmetric and mixed symmetry massless representations of the Poincaré group in D = 6 space-time, Phys. Lett. B 309 (1993) 39 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  8. [8]

    X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge theory revisited, JHEP 01 (2006) 052 [hep-th/0508048] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  9. [9]

    N. Boulanger, S. Leclercq and S. Cnockaert, Parity violating vertices for spin-3 gauge fields, Phys. Rev. D 73 (2006) 065019 [hep-th/0509118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. [10]

    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. [11]

    N. Boulanger and S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields, JHEP 11 (2006) 034 [hep-th/0609221] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    R.R. Metsaev, Gravitational and higher-derivative interactions of massive spin 5/2 field in (A)dS space, Phys. Rev. D 77 (2008) 025032 [hep-th/0612279] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. [13]

    A. Fotopoulos and M. Tsulaia, Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST Formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. [14]

    Yu. M. Zinoviev, On spin 3 interacting with gravity, Class. Quant. Grav. 26 (2009) 035022 [arXiv:0805.2226] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  15. [15]

    N. Boulanger, S. Leclercq and P. Sundell, On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    R. Manvelyan, K. Mkrtchyan and W. Rühl, Off-shell construction of some trilinear higher spin gauge field interactions, Nucl. Phys. B 826 (2010) 1 [arXiv:0903.0243] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    X. Bekaert, N. Boulanger and S. Leclercq, Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A 43 (2010) 185401 [arXiv:1002.0289] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. [18]

    R. Manvelyan, K. Mkrtchyan and W. Ruehl, Direct Construction of A Cubic Selfinteraction for Higher Spin gauge Fields, Nucl. Phys. B 844 (2011) 348 [arXiv:1002.1358] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  21. [21]

    R. Manvelyan, K. Mkrtchyan and W. Ruehl, A generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Fotopoulos and M. Tsulaia, On the Tensionless Limit of String theory, Off-Shell Higher Spin Interaction Vertices and BCFW Recursion Relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  23. [23]

    M.A. Vasiliev, Cubic Vertices for Symmetric Higher-Spin Gauge Fields in (A)dS d , Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  24. [24]

    E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [arXiv:1110.5918] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  25. [25]

    E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [arXiv:1203.6578] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    N. Boulanger, D. Ponomarev and E.D. Skvortsov, Non-abelian cubic vertices for higher-spin fields in anti-de Sitter space, JHEP 05 (2013) 008 [arXiv:1211.6979] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  27. [27]

    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  29. [29]

    N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  30. [30]

    M.A. Vasiliev, Dynamics of Massless Higher Spins in the Second Order in Curvatures, Phys. Lett. B 238 (1990) 305 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  31. [31]

    R.R. Metsaev, Poincaré invariant dynamics of massless higher spins: Fourth order analysis on mass shell, Mod. Phys. Lett. A 6 (1991) 359 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  32. [32]

    D. Polyakov, Higher Spins and Open Strings: Quartic Interactions, Phys. Rev. D 83 (2011) 046005 [arXiv:1011.0353] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    M. Taronna, Higher-Spin Interactions: four-point functions and beyond, JHEP 04 (2012) 029 [arXiv:1107.5843] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  34. [34]

    P. Dempster and M. Tsulaia, On the Structure of Quartic Vertices for Massless Higher Spin Fields on Minkowski Background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  35. [35]

    I. Florakis, D. Sorokin and M. Tsulaia, Higher Spins in Hyperspace, JHEP 07 (2014) 105 [arXiv:1401.1645] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    I. Florakis, D. Sorokin and M. Tsulaia, Higher Spins in Hyper-Superspace, Nucl. Phys. B 890 (2014) 279 [arXiv:1408.6675] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. [37]

    I.L. Buchbinder and V.A. Krykhtin, Quartic interaction vertex in the massive integer higher spin field theory in a constant electromagnetic field, Eur. Phys. J. C 75 (2015) 454 [arXiv:1507.03723] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  39. [39]

    M.A. Vasiliev, Star-Product Functions in Higher-Spin Theory and Locality, JHEP 06 (2015) 031 [arXiv:1502.02271] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  40. [40]

    P. Kessel, G. Lucena Gomez, E.D. Skvortsov and M. Taronna, Higher Spins and Matter Interacting in Dimension Three, arXiv:1505.05887 [INSPIRE].

  41. [41]

    N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher Spin Interactions in Four Dimensions: Vasiliev vs. Fronsdal, arXiv:1508.04139 [INSPIRE].

  42. [42]

    E.D. Skvortsov and M. Taronna, On Locality, Holography and Unfolding, arXiv:1508.04764 [INSPIRE].

  43. [43]

    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  44. [44]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  45. [45]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  46. [46]

    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  47. [47]

    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d , Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  48. [48]

    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  49. [49]

    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  50. [50]

    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. [51]

    A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  52. [52]

    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  53. [53]

    S. Giombi and I.R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  54. [54]

    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher Spin AdS d+1 /CFT d at One Loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition Functions and Casimir Energies in Higher Spin AdS d+1 /CFT d , Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    M. Beccaria and A.A. Tseytlin, Higher spins in AdS 5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    N. Colombo and P. Sundell, Higher Spin Gravity Amplitudes From Zero-form Charges, arXiv:1208.3880 [INSPIRE].

  58. [58]

    V.E. Didenko and E.D. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, JHEP 04 (2013) 158 [arXiv:1210.7963] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  59. [59]

    O.A. Gelfond and M.A. Vasiliev, Operator algebra of free conformal currents via twistors, Nucl. Phys. B 876 (2013) 871 [arXiv:1301.3123] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  60. [60]

    V.E. Didenko, J. Mei and E.D. Skvortsov, Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev Theory, Phys. Rev. D 88 (2013) 046011 [arXiv:1301.4166] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    L.A. Pando Zayas and C. Peng, Toward a Higher-Spin Dual of Interacting Field Theories, JHEP 10 (2013) 023 [arXiv:1303.6641] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  63. [63]

    I. Sachs, Higher spin versus renormalization group equations, Phys. Rev. D 90 (2014) 085003 [arXiv:1306.6654] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    R.G. Leigh, O. Parrikar and A.B. Weiss, Holographic geometry of the renormalization group and higher spin symmetries, Phys. Rev. D 89 (2014) 106012 [arXiv:1402.1430] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    R.G. Leigh, O. Parrikar and A.B. Weiss, Exact renormalization group and higher-spin holography, Phys. Rev. D 91 (2015) 026002 [arXiv:1407.4574] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    E. Mintun and J. Polchinski, Higher Spin Holography, RG and the Light Cone, arXiv:1411.3151 [INSPIRE].

  67. [67]

    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical Formulation of O(N) Vector/Higher Spin Correspondence, J. Phys. A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    D. Sarkar and X. Xiao, Holographic Representation of Higher Spin Gauge Fields, Phys. Rev. D 91 (2015) 086004 [arXiv:1411.4657] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    F. Kristiansson and P. Rajan, Scalar field corrections to AdS 4 gravity from higher spin gauge theory, JHEP 04 (2003) 009 [hep-th/0303202] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  70. [70]

    C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  72. [72]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  73. [73]

    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  75. [75]

    S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  77. [77]

    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, arXiv:1508.00501 [INSPIRE].

  79. [79]

    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  80. [80]

    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  81. [81]

    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  83. [83]

    G. Chalmers and K. Schalm, The large-N c limit of four point functions in N = 4 super Yang-Mills theory from Anti-de Sitter supergravity, Nucl. Phys. B 554 (1999) 215 [hep-th/9810051] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  84. [84]

    H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. [85]

    E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS d+1, Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  86. [86]

    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1, Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  87. [87]

    G. Chalmers and K. Schalm, Holographic normal ordering and multiparticle states in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 046001 [hep-th/9901144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  88. [88]

    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  89. [89]

    D. Francia, J. Mourad and A. Sagnotti, Current Exchanges and Unconstrained Higher Spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  90. [90]

    D. Francia, J. Mourad and A. Sagnotti, (A)dS exchanges and partially-massless higher spins, Nucl. Phys. B 804 (2008) 383 [arXiv:0803.3832] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  91. [91]

    A. Sagnotti, Higher Spins and Current Exchanges, PoS(CORFU2011)106 [arXiv:1002.3388] [INSPIRE].

  92. [92]

    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange, JHEP 03 (2015) 170 [arXiv:1412.0016] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  93. [93]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  94. [94]

    D. Anselmi, Higher spin current multiplets in operator product expansions, Class. Quant. Grav. 17 (2000) 1383 [hep-th/9906167] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  95. [95]

    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

  96. [96]

    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7), Phys. Rev. D 20 (1979) 848 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  98. [98]

    R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  99. [99]

    X. Bekaert and E. Meunier, Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions, JHEP 11 (2010) 116 [arXiv:1007.4384] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  100. [100]

    C. Sleight and M. Taronna, Scalar Back-reaction from Higher-Spin Alegbras: Unfolding and the Cubic Action, to appear.

  101. [101]

    D.E. Diaz and H. Dorn, On the AdS higher spin/O(N) vector model correspondence: Degeneracy of the holographic image, JHEP 07 (2006) 022 [hep-th/0603084] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  102. [102]

    A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180 [hep-th/9410093] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  103. [103]

    J. Penedones, High Energy Scattering in the AdS/CFT Correspondence, arXiv:0712.0802.

  104. [104]

    C. Fronsdal, Elementary particles in a curved space. ii, Phys. Rev. D 10 (1974) 589 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  105. [105]

    V.K. Dobrev, Intertwining operator realization of the AdS/CFT correspondence, Nucl. Phys. B 553 (1999) 559 [hep-th/9812194] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  106. [106]

    T. Leonhardt, R. Manvelyan and W. Rühl, The group approach to AdS space propagators, Nucl. Phys. B 667 (2003) 413 [hep-th/0305235] [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    T. Leonhardt, W. Rühl and R. Manvelyan, The group approach to AdS space propagators: A fast algorithm, J. Phys. A 37 (2004) 7051 [hep-th/0310063] [INSPIRE].

    ADS  Google Scholar 

  108. [108]

    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

  109. [109]

    S. Ferrara, R. Gatto and A.F. Grillo, Conformal invariance on the light cone and canonical dimensions, Nucl. Phys. B 34 (1971) 349 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  110. [110]

    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim. 2S2 (1971) 1363 [Lett. Nuovo Cim. 2 (1971) 1363] [INSPIRE].

  111. [111]

    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D 5 (1972) 3102 [INSPIRE].

    ADS  Google Scholar 

  112. [112]

    H. Liu, Scattering in anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [INSPIRE].

    ADS  Google Scholar 

  113. [113]

    L. Hoffmann, A.C. Petkou and W. Rühl, A Note on the analyticity of AdS scalar exchange graphs in the crossed channel, Phys. Lett. B 478 (2000) 320 [hep-th/0002025] [INSPIRE].

    ADS  Article  Google Scholar 

  114. [114]

    J. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, q-alg/9702012 [INSPIRE].

  115. [115]

    M. Henneaux, Consistent interactions between gauge fields: The cohomological approach, Contemp. Math. 219 (1998) 93 [hep-th/9712226] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  116. [116]

    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  117. [117]

    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  119. [119]

    T.Y. Thomas, On conformal geometry, Proc. Nat. Acad. Sci. 12 (1926) 352.

    ADS  MATH  Article  Google Scholar 

  120. [120]

    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  121. [121]

    F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Sleight.

Additional information

ArXiv ePrint: 1508.04292

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bekaert, X., Erdmenger, J., Ponomarev, D. et al. Quartic AdS interactions in higher-spin gravity from Conformal Field Theory. J. High Energ. Phys. 2015, 149 (2015). https://doi.org/10.1007/JHEP11(2015)149

Download citation

Keywords

  • Higher Spin Gravity
  • AdS-CFT Correspondence
  • Conformal and W Symmetry
  • Higher Spin Symmetry