Journal of High Energy Physics

, 2015:136 | Cite as

Hedgehog bases for An cluster polylogarithms and an application to six-point amplitudes

  • Daniel E. Parker
  • Adam Scherlis
  • Marcus Spradlin
  • Anastasia Volovich
Open Access
Regular Article - Theoretical Physics

Abstract

Multi-loop scattering amplitudes in \( \mathcal{N}=4 \) Yang-Mills theory possess cluster algebra structure. In order to develop a computational framework which exploits this connection, we show how to construct bases of Goncharov polylogarithm functions, at any weight, whose symbol alphabet consists of cluster coordinates on the An cluster algebra. Using such a basis we present a new expression for the 2-loop 6-particle NMHV amplitude which makes some of its cluster structure manifest.

Keywords

Supersymmetric gauge theory Scattering Amplitudes 

References

  1. [1]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  3. [3]
    J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys. A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP 02 (2015) 002 [arXiv:1411.3289] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \( \mathcal{N}=4 \) Yang-Mills theory, JHEP 09 (2013) 111 [arXiv:1306.1833] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in \( \mathcal{N}=4 \) SYM, JHEP 08 (2014) 154 [arXiv:1406.2055] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in \( \mathcal{N}=4 \) super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar \( \mathcal{N}=4 \) super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar \( \mathcal{N}=4 \) super-Yang-Mills theory, PoS(LL2014)077 [arXiv:1407.4724] [INSPIRE].
  14. [14]
    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
  15. [15]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
  16. [16]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
  17. [17]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].
  18. [18]
    A.V. Belitsky, Nonsinglet pentagons and NMHV amplitudes, Nucl. Phys. B 896 (2015) 493 [arXiv:1407.2853] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    A.V. Belitsky, Fermionic pentagons and NMHV hexagon, Nucl. Phys. B 894 (2015) 108 [arXiv:1410.2534] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\overline{\mathfrak{M}}}_{0,n}(R) \), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math.AG/0606419] [INSPIRE].
  21. [21]
    C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, Commun. Num. Theor. Phys. 09 (2015) 189 [arXiv:1408.1862] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [INSPIRE].
  23. [23]
    K.T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831.MATHCrossRefGoogle Scholar
  24. [24]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059 [INSPIRE].
  25. [25]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, Adv. Math. 241 (2013) 79 [arXiv:0908.2238] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math.AG/0208144] [INSPIRE].
  29. [29]
    S. Fomin and A. Zelevinsky, Cluster algebras. I: Foundations, J. Am. Math. Soc. 15 (2002) 497 [math.RT/0104151].
  30. [30]
    S. Fomin and A. Zelevinsky, Cluster algebras. II: Finite type classification, Invent. Math. 154 (2003) 63 [math.RA/0208229].
  31. [31]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, American Mathematical Society (2010), http://www.ams.org/bookstore-getitem/item=surv-167.
  32. [32]
    L.K. Williams, Cluster algebras: an introduction, arXiv:1212.6263.
  33. [33]
    V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865 [math.AG/0311245] [INSPIRE].
  34. [34]
    M.A.C. Torres, Cluster algebras in scattering amplitudes with special 2D kinematics, Eur. Phys. J. C 74 (2014) 2757 [arXiv:1310.6906] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    M.F. Paulos and B.U.W. Schwab, Cluster algebras and the positive Grassmannian, JHEP 10 (2014) 031 [arXiv:1406.7273] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    J.S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006) 345 [math.CO/0311148].
  44. [44]
    V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in \( \mathcal{N}=4 \) SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in \( \mathcal{N}=4 \) SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar \( \mathcal{N}=4 \) super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar \( \mathcal{N}=4 \) super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in \( \mathcal{N}=4 \) SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    P. Heslop and V.V. Khoze, Wilson loops @ 3-loops in special kinematics, JHEP 11 (2011) 152 [arXiv:1109.0058] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    T. Goddard, P. Heslop and V.V. Khoze, Uplifting amplitudes in special kinematics, JHEP 10 (2012) 041 [arXiv:1205.3448] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    S. Caron-Huot and S. He, Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, JHEP 08 (2013) 101 [arXiv:1305.2781] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  53. [53]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  54. [54]
    J.M. Drummond, private communication.Google Scholar
  55. [55]
    D.E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra 58 (1979) 432.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Daniel E. Parker
    • 1
  • Adam Scherlis
    • 1
  • Marcus Spradlin
    • 1
  • Anastasia Volovich
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations