Advertisement

Journal of High Energy Physics

, 2015:125 | Cite as

General squark flavour mixing: constraints, phenomenology and benchmarks

  • Karen De Causmaecker
  • Benjamin Fuks
  • Björn Herrmann
  • Farvah Mahmoudi
  • Ben O’Leary
  • Werner Porod
  • Sezen Sekmen
  • Nadja Strobbe
Open Access
Regular Article - Theoretical Physics

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
  4. [4]
  5. [5]
    L.J. Hall, V.A. Kostelecky and S. Raby, New Flavor Violations in Supergravity Models, Nucl. Phys. B 267 (1986) 415 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  7. [7]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].
  8. [8]
    F. Gabbiani and A. Masiero, FCNC in Generalized Supersymmetric Theories, Nucl. Phys. B 322 (1989) 235 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Heinemeyer, W. Hollik, F. Merz and S. Penaranda, Electroweak precision observables in the MSSM with nonminimal flavor violation, Eur. Phys. J. C 37 (2004) 481 [hep-ph/0403228] [INSPIRE].
  11. [11]
    G. Bozzi, B. Fuks, B. Herrmann and M. Klasen, Squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry, Nucl. Phys. B 787 (2007) 1 [arXiv:0704.1826] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    S. Dittmaier, G. Hiller, T. Plehn and M. Spannowsky, Charged-Higgs Collider Signals with or without Flavor, Phys. Rev. D 77 (2008) 115001 [arXiv:0708.0940] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Fuks, B. Herrmann and M. Klasen, Flavour Violation in Gauge-Mediated Supersymmetry Breaking Models: Experimental Constraints and Phenomenology at the LHC, Nucl. Phys. B 810 (2009) 266 [arXiv:0808.1104] [INSPIRE].
  14. [14]
    T. Hurth and W. Porod, Flavour violating squark and gluino decays, JHEP 08 (2009) 087 [arXiv:0904.4574] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto and W. Porod, Impact of squark generation mixing on the search for gluinos at LHC, Phys. Lett. B 679 (2009) 260 [arXiv:0905.0132] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    T. Plehn, M. Rauch and M. Spannowsky, Understanding Single Tops using Jets, Phys. Rev. D 80 (2009) 114027 [arXiv:0906.1803] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Bartl, H. Eberl, B. Herrmann, K. Hidaka, W. Majerotto and W. Porod, Impact of squark generation mixing on the search for squarks decaying into fermions at LHC, Phys. Lett. B 698 (2011) 380 [Erratum ibid. B 700 (2011) 390] [arXiv:1007.5483] [INSPIRE].
  18. [18]
    M. Bruhnke, B. Herrmann and W. Porod, Signatures of bosonic squark decays in non-minimally flavour-violating supersymmetry, JHEP 09 (2010) 006 [arXiv:1007.2100] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    A. Bartl et al., Flavour violating gluino three-body decays at LHC, Phys. Rev. D 84 (2011) 115026 [arXiv:1107.2775] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Fuks, B. Herrmann and M. Klasen, Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation, Phys. Rev. D 86 (2012) 015002 [arXiv:1112.4838] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Bartl et al., Flavor violating bosonic squark decays at LHC, Int. J. Mod. Phys. A 29 (2014) 1450035 [arXiv:1212.4688] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured Naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    M. Backović, A. Mariotti and M. Spannowsky, Signs of Tops from Highly Mixed Stops, JHEP 06 (2015) 122 [arXiv:1504.00927] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Arana-Catania, S. Heinemeyer and M.J. Herrero, Updated Constraints on General Squark Flavor Mixing, Phys. Rev. D 90 (2014) 075003 [arXiv:1405.6960] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Kowalska, Phenomenology of SUSY with General Flavour Violation, JHEP 09 (2014) 139 [arXiv:1406.0710] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S.K. Vempati and O. Vives, Soft SUSY breaking grand unification: Leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].
  27. [27]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  28. [28]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  29. [29]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  30. [30]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    A.A. Markov, Extension of the limit theorems of probability theory to a sum of variables connected in a chain, reprinted in appendix B of Dynamic Probabilistic Systems, volume 1: Markov Chains, R. Howard, John Wiley and Sons, (1971).Google Scholar
  32. [32]
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087 [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika 57 (1970) 97.zbMATHCrossRefGoogle Scholar
  34. [34]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  35. [35]
    LHCb, CMS collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  36. [36]
    LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0K ∗0 μ + μ , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].
  37. [37]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay, LHCb-CONF-2015-002.
  38. [38]
    BaBar collaboration, J.P. Lees et al., Measurement of the BX s+ branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].
  39. [39]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2013) 1 [arXiv:1207.7214] [INSPIRE].
  40. [40]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  41. [41]
    F. Mahmoudi, SuperIso: A program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  42. [42]
    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    F. Mahmoudi et al., Flavour Les Houches Accord: Interfacing Flavour related Codes, Comput. Phys. Commun. 183 (2012) 285 [arXiv:1008.0762] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    M. Misiak et al., Estimate of \( B\left(\overline{B}\to {X}_s\gamma \right) \) at O(α s2), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].
  45. [45]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B}\to {X}_s\gamma \) matrix elements using interpolation in m(c), Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].
  46. [46]
    M. Misiak and M. Poradzinski, Completing the Calculation of BLM corrections to \( \overline{B}\to Xs\gamma \), Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Y.-B. Dai, C.-S. Huang and H.-W. Huang, BX s τ + τ in a two Higgs doublet model, Phys. Lett. B 390 (1997) 257 [Erratum ibid. B 513 (2001) 429] [hep-ph/9607389] [INSPIRE].
  48. [48]
    A. Ghinculov, T. Hurth, G. Isidori and Y.P. Yao, The rare decay BX s+ to NNLL precision for arbitrary dilepton invariant mass, Nucl. Phys. B 685 (2004) 351 [hep-ph/0312128] [INSPIRE].
  49. [49]
    T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} \), Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].
  50. [50]
    T. Huber, T. Hurth and E. Lunghi, Logarithmically Enhanced Corrections to the Decay Rate and Forward Backward Asymmetry in \( \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} \), Nucl. Phys. B 802 (2008) 40 [arXiv:0712.3009] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive BV+ , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
  52. [52]
    M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak bd and bs penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].
  53. [53]
    F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0K ∗0(→ K π +)ℓ+ at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].
  54. [54]
    U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables in the decay mode \( {\overline{B}}_d\to {{\overline{K}}^{\ast}}^0{\ell}^{+}{\ell}^{-} \), JHEP 11 (2008) 032 [arXiv:0807.2589] [INSPIRE].
  55. [55]
    U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay mode \( \overline{B}\to {\overline{K}}^{\ast 0}{\ell}^{+}{\ell}^{-} \), JHEP 10 (2010) 056 [arXiv:1005.0571] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in BK (∗)+ and BK γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    H. Dreiner, K. Nickel, W. Porod and F. Staub, Full 1-loop calculation of \( BR\left({B}_{s,d}^0\to \ell \overline{\ell}\right) \) in models beyond the MSSM with SARAH and SPheno, Comput. Phys. Commun. 184 (2013) 2604 [arXiv:1212.5074] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, sμ + μ and BX sγ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [INSPIRE].
  59. [59]
    G. Isidori and A. Retico, B s,d → ℓ+ and K L → ℓ+ in SUSY models with nonminimal sources of flavor mixing, JHEP 09 (2002) 063 [hep-ph/0208159] [INSPIRE].
  60. [60]
    S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [INSPIRE].
  61. [61]
    A.J. Buras, S. Jager and J. Urban, Master formulae for Delta F=2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  62. [62]
    S. Herrlich and U. Nierste, The completeS| = 2 Hamiltonian in the next-to-leading order, Nucl. Phys. B 476 (1996) 27 [hep-ph/9604330] [INSPIRE].
  63. [63]
    A.J. Buras, T. Ewerth, S. Jager and J. Rosiek, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) decays in the general MSSM, Nucl. Phys. B 714 (2005) 103 [hep-ph/0408142] [INSPIRE].
  64. [64]
    G. Colangelo and G. Isidori, Supersymmetric contributions to rare kaon decays: Beyond the single mass insertion approximation, JHEP 09 (1998) 009 [hep-ph/9808487] [INSPIRE].
  65. [65]
    A. Crivellin, L. Hofer and J. Rosiek, Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation, JHEP 07 (2011) 017 [arXiv:1103.4272] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    T. Ibrahim and P. Nath, CP violation and the muon anomaly in N = 1 supergravity, Phys. Rev. D 61 (2000) 095008 [hep-ph/9907555] [INSPIRE].
  67. [67]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  68. [68]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].
  69. [69]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α t2) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].
  70. [70]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].
  71. [71]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan beta, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].
  72. [72]
    A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in the MSSM, Nucl. Phys. B 657 (2003) 333 [hep-ph/0212132] [INSPIRE].
  73. [73]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].
  74. [74]
    M. Arana-Catania, S. Heinemeyer, M.J. Herrero and S. Penaranda, Higgs Boson masses and B-Physics Constraints in Non-Minimal Flavor Violating SUSY scenarios, JHEP 05 (2012) 015 [arXiv:1109.6232] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992) 457 [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Karen De Causmaecker
    • 1
  • Benjamin Fuks
    • 2
    • 3
    • 4
  • Björn Herrmann
    • 5
  • Farvah Mahmoudi
    • 6
    • 7
    • 8
    • 13
  • Ben O’Leary
    • 9
  • Werner Porod
    • 9
  • Sezen Sekmen
    • 10
  • Nadja Strobbe
    • 11
    • 12
  1. 1.Theoretische Natuurkunde, IIHE/ELEM and International Solvay InstitutesVrije Universiteit BrusselBrusselsBelgium
  2. 2.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  3. 3.CNRS, UMR 7589, LPTHEParisFrance
  4. 4.Institut Pluridisciplinaire Hubert Curien/Département Recherches SubatomiquesUniversité de Strasbourg/CNRS-IN2P3StrasbourgFrance
  5. 5.LAPTh, Université Savoie Mont Blanc, CNRSAnnecy-le-VieuxFrance
  6. 6.Université de Lyon, Université Lyon 1, Centre de Recherche Astrophysique de Lyon, CNRS, UMR 5574Saint-Genis Laval CedexFrance
  7. 7.Ecole Normale Supérieure de LyonLyonFrance
  8. 8.Physics Department, CERN Theory DivisionGeneva 23Switzerland
  9. 9.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  10. 10.Department of PhysicsKyungpook National UniversityDaeguKorea
  11. 11.Department of Physics and AstronomyGhent UniversityGentBelgium
  12. 12.Fermi National Accelerator LaboratoryBataviaU.S.A.
  13. 13.Institut Universitaire de FranceParisFrance

Personalised recommendations