Heavy Higgs bosons at 14 TeV and 100 TeV


Searching for Higgs bosons beyond the Standard Model (BSM) is one of the most important missions for hadron colliders. As a landmark of BSM physics, the MSSM Higgs sector at the LHC is expected to be tested up to the scale of the decoupling limit of \( \mathcal{O} \)(1) TeV, except for a wedge region centered around tan β ∼ 3-10, which has been known to be difficult to probe. In this article, we present a dedicated study testing the decoupled MSSM Higgs sector, at the LHC and a next-generation pp-collider, proposing to search in channels with associated Higgs productions, with the neutral and charged Higgs further decaying into tt and tb, respectively. In the case of neutral Higgs we are able to probe for the so far uncovered wedge region via ppbbH/Abbtt. Additionally, we cover the the high tan β range with ppbbH/Abbτ τ . The combination of these searches with channels dedicated to the low tan β region, such as ppH/Att and ppttH/Atttt potentially covers the full tan β range. The search for charged Higgs has a slightly smaller sensitivity for the moderate tan β region, but additionally probes for the higher and lower tan β regions with even greater sensitivity, via pptbH ±tbtb. While the LHC will be able to probe the whole tan β range for Higgs masses of \( \mathcal{O} \)(1) TeV by combining these channels, we show that a future 100 TeV pp-collider has a potential to push the sensitivity reach up to ∼ \( \mathcal{O} \)(10) TeV. In order to deal with the novel kinematics of top quarks produced by heavy Higgs decays, the multivariate Boosted Decision Tree (BDT) method is applied in our collider analyses. The BDT-based tagging efficiencies of both hadronic and leptonic top-jets, and their mutual fake rates as well as the faking rates by other jets (h, Z, W , b, etc.) are also presented.

A preprint version of the article is available at ArXiv.


  1. [1]

    TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

  2. [2]

    CEPC-SppC Study Group collaboration, CEPC-SppC Preliminary Conceptual Design Report, technical report IHEP-CEPC-DR-2015-01 (2015).

  3. [3]

    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1544002 [arXiv:1504.06108] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    J. Bramante, P.J. Fox, A. Martin, B. Ostdiek, T. Plehn et al., Relic neutralino surface at a 100 TeV collider, Phys. Rev. D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    B. Auerbach, S. Chekanov, J. Love, J. Proudfoot and A.V. Kotwal, Sensitivity to new high-mass states decaying to tt at a 100 TeV collider, Phys. Rev. D 91 (2015) 034014 [arXiv:1412.5951] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    J. Butterworth et al., Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report, arXiv:1405.1067 [INSPIRE].

  8. [8]

    X.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs boson CP Properties with \( t\overline{t}H \) at the LHC and the 100 TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1550156 [arXiv:1501.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    A. Avetisyan et al., Methods and Results for Standard Model Event Generation at \( \sqrt{s}=14 \) TeV, 33TeV and 100TeV Proton Colliders (A Snowmass Whitepaper), arXiv:1308.1636 [INSPIRE].

  10. [10]

    A. Avetisyan et al., Snowmass Energy Frontier Simulations using the Open Science Grid (A Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].

  11. [11]

    J. Anderson et al., Snowmass Energy Frontier Simulations, arXiv:1309.1057 [INSPIRE].

  12. [12]

    S. Assadi, C. Collins, P. McIntyre, J. Gerity, J. Kellams et al., Higgs Factory and 100 TeV Hadron Collider: Opportunity for a New World Laboratory within a Decade, arXiv:1402.5973 [INSPIRE].

  13. [13]

    B.F.L. Ward, New Approach to Hard Corrections in Precision QCD for LHC and FCC Physics, arXiv:1407.7290 [INSPIRE].

  14. [14]

    A. Hook and A. Katz, Unbroken SU(2) at a 100 TeV collider, JHEP 09 (2014) 175 [arXiv:1407.2607] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    H.P. Nilles, The supersymmetric standard model, Lect. Notes Phys. 405 (1992) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].

  19. [19]

    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].

  20. [20]

    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  21. [21]

    CMS Collaboration, Search for charged Higgs bosons with the H +τ + ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-020.

  22. [22]

    CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV,Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].

  23. [23]

    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].

  24. [24]

    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    B. Bhattacherjee, A. Chakraborty and A. Choudhury, Status of MSSM Higgs Sector using Global Analysis and Direct Search Bounds and Future Prospects at the HL-LHC, arXiv:1504.04308 [INSPIRE].

  26. [26]

    E. Arganda, J. Lorenzo Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].

    Article  ADS  Google Scholar 

  27. [27]

    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    S. Gennai, S. Heinemeyer, A. Kalinowski, R. Kinnunen, S. Lehti, A. Nikitenko et al., Search for heavy neutral MSSM Higgs bosons with CMS: Reach and Higgs-mass precision, Eur. Phys. J. C 52 (2007) 383 [arXiv:0704.0619] [INSPIRE].

    Article  ADS  Google Scholar 

  29. [29]

    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    R. Frederix and F. Maltoni, Top pair invariant mass distribution: A Window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner and L.-T. Wang, LHC Discovery Potential for Non-Standard Higgs Bosons in the 3b Channel, JHEP 07 (2012) 091 [arXiv:1203.1041] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    BoCA: Boosted Collider Analysis, https://github.com/BoostedColliderAnalysis/BoCA (2015).

  34. [34]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  35. [35]

    I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, in proceedings of the International Workshop on physics and experiments with future electron-positron linear colliders, LCWS 2002, Seogwipo, Jeju Island, Korea, 26-30 August 2002 [hep-ph/0211371] [INSPIRE].

  36. [36]

    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].

  37. [37]

    H.E. Haber, Challenges for nonminimal Higgs searches at future colliders, in proceedings of the Perspectives for electroweak interactions in e + e collisions, Ringberg Castle, Tegernsee, Germany, 5-8 February 1995 [hep-ph/9505240] [INSPIRE].

  38. [38]

    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  40. [40]

    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].

  41. [41]

    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  42. [42]

    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SUSY : reopening the low tan β regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    M. Flechl, R. Klees, M. Krämer, M. Spira and M. Ubiali, Improved cross-section predictions for heavy charged Higgs boson production at the LHC, Phys. Rev. D 91 (2015) 075015 [arXiv:1409.5615] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].

  45. [45]

    E.L. Berger, T. Han, J. Jiang and T. Plehn, Associated production of a top quark and a charged Higgs boson, Phys. Rev. D 71 (2005) 115012 [hep-ph/0312286] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  47. [47]

    F. Cascioli, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].

    Article  ADS  Google Scholar 

  48. [48]

    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  49. [49]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  50. [50]

    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  51. [51]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    A. Hocker et al., TMVA: Toolkit for Multivariate Data Analysis, PoS (ACAT) 040 [physics/0703039] [INSPIRE].

  53. [53]

    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    G. Kasieczka, T. Plehn, T. Schell, T. Strebler and G.P. Salam, Resonance Searches with an Updated Top Tagger, JHEP 06 (2015) 203 [arXiv:1503.05921] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].

    Article  ADS  Google Scholar 

  57. [57]

    A. Hook, M. Jankowiak and J.G. Wacker, Jet Dipolarity: Top Tagging with Color Flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou and J.G. Wacker, Boosting Stop Searches with a 100 TeV Proton Collider, JHEP 11 (2014) 021 [arXiv:1406.4512] [INSPIRE].

    Article  ADS  Google Scholar 

  59. [59]

    N. Craig, J. Hajer, Y.Y. Li, T. Liu and H. Zhang, Heavy Higgs Bosons at Low tan β: from LHC to 100 TeV, in preparation.

  60. [60]

    B. Coleppa, F. Kling and S. Su, Exotic Decays Of A Heavy Neutral Higgs Through HZ/AZ Channel, JHEP 09 (2014) 161 [arXiv:1404.1922] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ± /HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].

    Article  ADS  Google Scholar 

  62. [62]

    F. Kling, A. Pyarelal and S. Su, Light Charged Higgs Bosons to AW/HW via Top Decay, arXiv:1504.06624 [INSPIRE].

  63. [63]

    T. Li and S. Su, Exotic Higgs Decay via Charged Higgs, arXiv:1504.04381 [INSPIRE].

  64. [64]

    P.S.B. Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [arXiv:1408.3405] [INSPIRE].

    Google Scholar 

  65. [65]

    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].

    Article  ADS  Google Scholar 

  66. [66]

    B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu and G. McGregor, Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth. A 543 (2005) 577 [physics/0408124] [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    A. Ali, F. Barreiro and J. Llorente, Improved sensitivity to charged Higgs searches in Top quark decays tbH +b(τ + ν τ ) at the LHC using τ polarisation and multivariate tecnniques, Eur. Phys. J. C 71 (2011) 1737 [arXiv:1103.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  68. [68]

    ATLAS collaboration, Reconstruction, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons, ATLAS-CONF-2011-077.

  69. [69]

    CMS collaboration, Search for s-channel single top-quark production in pp collisions at \( \sqrt{s}=8 \) TeV,CMS-PAS-TOP-13-009.

  70. [70]

    ATLAS collaboration, Measurement of the cross-section for associated production of a top quark and a W boson at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-100.

  71. [71]

    ATLAS collaboration, Search for s-channel single top-quark production in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 740 (2015) 118 [arXiv:1410.0647] [INSPIRE].

  72. [72]

    Y. Coadou, Boosted Decision Trees and Applications, EPJ Web Conf. 55 (2013) 02004.

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Tao Liu.

Additional information

ArXiv ePrint: 1504.07617

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajer, J., Li, YY., Liu, T. et al. Heavy Higgs bosons at 14 TeV and 100 TeV. J. High Energ. Phys. 2015, 124 (2015). https://doi.org/10.1007/JHEP11(2015)124

Download citation


  • Higgs Physics
  • Beyond Standard Model
  • Supersymmetric Standard Model