Journal of High Energy Physics

, 2015:115 | Cite as

The phase diagram of scalar field theory on the fuzzy disc

Open Access
Regular Article - Theoretical Physics

Abstract

Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.

Keywords

Matrix Models Non-Commutative Geometry Field Theories in Lower Dimensions 

References

  1. [1]
    H. Grosse, C. Klimčík and P. Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231 [hep-th/9505175] [INSPIRE].MATHCrossRefGoogle Scholar
  2. [2]
    D. O’Connor and C. Sämann, Fuzzy scalar field theory as a multitrace matrix model, JHEP 08 (2007) 066 [arXiv:0706.2493] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    C. Sämann, The multitrace matrix model of scalar field theory on fuzzy ℂP n, SIGMA 6 (2010) 050 [arXiv:1003.4683] [INSPIRE].Google Scholar
  4. [4]
    M. Ihl, C. Sachse and C. Sämann, Fuzzy scalar field theory as matrix quantum mechanics, JHEP 03 (2011) 091 [arXiv:1012.3568] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    B. Ydri, A multitrace approach to noncommutative Φ24, arXiv:1410.4881 [INSPIRE].
  6. [6]
    V.P. Nair, A.P. Polychronakos and J. Tekel, Fuzzy spaces and new random matrix ensembles, Phys. Rev. D 85 (2012) 045021 [arXiv:1109.3349] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A.P. Polychronakos, Effective action and phase transitions of scalar field on the fuzzy sphere, Phys. Rev. D 88 (2013) 065010 [arXiv:1306.6645] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Tekel, Uniform order phase and phase diagram of scalar field theory on fuzzy ℂPn, JHEP 10 (2014) 144 [arXiv:1407.4061] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    C. Sämann, Bootstrapping fuzzy scalar field theory, JHEP 04 (2015) 044 [arXiv:1412.6255] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    F. Lizzi, P. Vitale and A. Zampini, The fuzzy disc, JHEP 08 (2003) 057 [hep-th/0306247] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    F. Lizzi and B. Spisso, Noncommutative field theory: numerical analysis with the fuzzy disc, Int. J. Mod. Phys. A 27 (2012) 1250137 [arXiv:1207.4998] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    C. Iuliu-Lazaroiu, D. McNamee and C. Sämann, Generalized Berezin quantization, Bergman metrics and fuzzy Laplacians, JHEP 09 (2008) 059 [arXiv:0804.4555] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].MATHCrossRefADSGoogle Scholar
  14. [14]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D Gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    Y. Shimamune, On the phase structure of large-N matrix models and gauge models, Phys. Lett. B 108 (1982) 407 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A.O. Shishanin, Phases of the Goldstone multitrace matrix model in the large-N limit, Theor. Math. Phys. 152 (2007) 1258 [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Garcia Flores, D. O’Connor and X. Martin, Simulating the scalar field on the fuzzy sphere, PoS(LAT2005)262 [hep-lat/0601012] [INSPIRE].
  18. [18]
    M. Panero, Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere, JHEP 05 (2007) 082 [hep-th/0608202] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    F. Garcia Flores, X. Martin and D. O’Connor, Simulation of a scalar field on a fuzzy sphere, Int. J. Mod. Phys. A 24 (2009) 3917 [arXiv:0903.1986] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    J. Glimm, A.M. Jaffe and T. Spencer, Phase transitions for ϕ 24 in two-dimensions quantum fields, Commun. Math. Phys. 45 (1975) 203 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  21. [21]
    W. Loinaz and R.S. Willey, Monte Carlo simulation calculation of critical coupling constant for continuum ϕ 24 in two-dimensions, Phys. Rev. D 58 (1998) 076003 [hep-lat/9712008] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Maxwell Institute for Mathematical Sciences, Department of MathematicsHeriot-Watt UniversityEdinburghU.K.

Personalised recommendations