Journal of High Energy Physics

, 2015:89 | Cite as

Emergent geometry of membranes

  • Mathias Hudoba de Badyn
  • Joanna L. Karczmarek
  • Philippe Sabella-Garnier
  • Ken Huai-Che Yeh
Open Access
Regular Article - Theoretical Physics


In work [1], a surface embedded in flat 3 is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in 3. Finally, we make remarks about area and find matrix equations for minimal area surfaces.


D-branes Non-Commutative Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Berenstein and E. Dzienkowski, Matrix embeddings on flat R 3 and the geometry of membranes, Phys. Rev. D 86 (2012) 086001 [arXiv:1204.2788] [INSPIRE].ADSGoogle Scholar
  2. [2]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    I. Ellwood, Relating branes and matrices, JHEP 08 (2005) 078 [hep-th/0501086] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    F. Berezin, General Concept of Quantization, Commun. Math. Phys. 40 (1975) 153.MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. [5]
    A.M. Perelomov, Coherent states for arbitrary lie groups, Commun. Math. Phys. 26 (1972) 222 [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. [6]
    H. Grosse and P. Presnajder, The construction of noncommutative manifolds using coherent states, Lett. Math. Phys. 28 (1993) 239.MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. [7]
    W.D. Kirwin, Coherent States in Geometric Quantization, math/0502026.
  8. [8]
    W.-M. Zhang, D.H. Feng and R. Gilmore, Coherent states: Theory and some Applications, Rev. Mod. Phys. 62 (1990) 867 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    A.M. Perelomov, Generalized coherent states and their applications, Theoretical and Mathematical Physics, Springer Berlin Heidelberg, Germany (1986) [ISBN:9783540159124].Google Scholar
  10. [10]
    H. Steinacker, Non-commutative geometry and matrix models, PoS (QGQGS2011) 004 [arXiv:1109.5521] [INSPIRE].
  11. [11]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    M. Kontsevich, Deformation quantization of Poisson manifolds. 1., Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. [13]
    J. Arnlind, M. Bordemann, L. Hofer, J. Hoppe and H. Shimada, Fuzzy Riemann surfaces, JHEP 06 (2009) 047 [hep-th/0602290] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    J. Arnlind, M. Bordemann, L. Hofer, J. Hoppe and H. Shimada, Noncommutative Riemann Surfaces, arXiv:0711.2588 [INSPIRE].
  15. [15]
    G. Ishiki, Matrix Geometry and Coherent States, Phys. Rev. D 92 (2015) 046009 [arXiv:1503.01230] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    J. Arnlind and J. Hoppe, The world as quantized minimal surfaces, Phys. Lett. B 723 (2013) 397 [arXiv:1211.1202] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    A. Schild, Classical Null Strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    A. Fayyazuddin, Y. Makeenko, P. Olesen, D.J. Smith and K. Zarembo, Towards a nonperturbative formulation of IIB superstrings by matrix models, Nucl. Phys. B 499 (1997) 159 [hep-th/9703038] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    K. Zarembo and Y. Makeenko, An introduction to matrix superstring models, Phys.Usp. 41 (1998) 1.CrossRefADSGoogle Scholar
  22. [22]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108 (2012) 011601 [arXiv:1108.1540] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mathias Hudoba de Badyn
    • 1
  • Joanna L. Karczmarek
    • 1
  • Philippe Sabella-Garnier
    • 1
  • Ken Huai-Che Yeh
    • 1
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations