Journal of High Energy Physics

, 2015:51 | Cite as

Light charged Higgs bosons to AW/HW via top decay

  • Felix Kling
  • Adarsh Pyarelal
  • Shufang Su
Open Access
Regular Article - Theoretical Physics


While current ATLAS and CMS measurements exclude a light charged Higgs (m H ± < 160 GeV) for most of the parameter region in the context of the MSSM scenarios, these bounds are significantly weakened in the Type II 2HDM once the exotic decay channel into a lighter neutral Higgs, H ±AW/HW, is open. In this study, we examine the possibility of a light charged Higgs produced in top decay via single top or top pair production, which is the most prominent production channel for a light charged Higgs at the LHC. We consider the subsequent decay H ±AW/HW, which can reach a sizable branching fraction at low tan β once it is kinematically permitted. With a detailed collider analysis, we obtain exclusion and discovery bounds for the 14 TeV LHC assuming the existence of a 70 GeV neutral scalar. Assuming BR(H ±AW/HW) = 100% and BR(A/Hττ) = 8.6%, the 95% exclusion limits on BR(tH + b) are about 0.2% and 0.03% for single top and top pair production respectively, with an integrated luminosity of 300 fb−1. The discovery reaches are about 3 times higher. In the context of the Type II 2HDM, discovery is possible at both large tan β > 17 for 155 GeV < m H ± < 165 GeV, and small tan β < 6 over the entire mass range. Exclusion is possible in the entire tan β versus \( {m}_{H^{\pm }} \) plane except for charged Higgs masses close to the top threshold. The exotic decay channel H ±AW/HW is therefore complementary to the conventional H ±τν channel.


Supersymmetry Phenomenology Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2013) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  4. [4]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  5. [5]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
  6. [6]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    R. Barbieri, Looking Beyond the Standard Model: The Supersymmetric Option, Riv. Nuovo Cim. 11N4 (1988) 1 [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    H.E. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    L.J. Hall and M.B. Wise, Flavor Changing Higgs – Boson Couplings, Nucl. Phys. B 187 (1981) 397 [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].ADSGoogle Scholar
  15. [15]
    CMS collaboration, Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons, arXiv:1504.00936 [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).
  17. [17]
    CMS collaboration, Search for charged Higgs bosons with the H+ to tau nu decay channel in the fully hadronic final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-020 (2014).
  18. [18]
    ATLAS collaboration, Search for a light charged Higgs boson in the decay channel \( {H}^{+}\to c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].
  19. [19]
    CMS collaboration, Search for H+ to cs-bar decay, CMS-PAS-HIG-13-035 (2014).
  20. [20]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
  21. [21]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
  22. [22]
  23. [23]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    E. Brownson et al., Heavy Higgs Scalars at Future Hadron Colliders (A Snowmass Whitepaper), arXiv:1308.6334 [INSPIRE].
  25. [25]
    B. Coleppa, F. Kling and S. Su, Exotic Decays Of A Heavy Neutral Higgs Through HZ/AZ Channel, JHEP 09 (2014) 161 [arXiv:1404.1922] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ± /HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    T. Li and S. Su, Exotic Higgs Decay via Charged Higgs, arXiv:1504.04381 [INSPIRE].
  28. [28]
    G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Echoes of the Electroweak Phase Transition: Discovering a second Higgs doublet through A 0ZH 0, Phys. Rev. Lett. 113 (2014) 211802 [arXiv:1405.5537] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    N. Chen, C. Du, Y. Fang and L.-C. Lü, LHC Searches for The Heavy Higgs Boson via Two B Jets plus Diphoton, Phys. Rev. D 89 (2014) 115006 [arXiv:1312.7212] [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Chen, J. Li, Y. Liu and Z. Liu, LHC searches for the CP-odd Higgs by the jet substructure analysis, Phys. Rev. D 91 (2015) 075002 [arXiv:1410.4447] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Enberg, W. Klemm, S. Moretti, S. Munir and G. Wouda, Charged Higgs boson in the W ± Higgs channel at the Large Hadron Collider, Nucl. Phys. B 893 (2015) 420 [arXiv:1412.5814] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    CMS collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state, CMS-PAS-HIG-14-011 (2014).
  33. [33]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  34. [34]
    CMS collaboration, 2HDM scenario, H to hh and A to Zh, CMS-PAS-HIG-13-025 (2013).
  35. [35]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    B. Coleppa, F. Kling and S. Su, Constraining Type II 2HDM in Light of LHC Higgs Searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C.D. Froggatt, R.G. Moorhouse and I.G. Knowles, Leading radiative corrections in two scalar doublet models, Phys. Rev. D 45 (1992) 2471 [INSPIRE].ADSGoogle Scholar
  39. [39]
    C.D. Froggatt, R.G. Moorhouse and I.G. Knowles, Two scalar doublet models with softly broken symmetries, Nucl. Phys. B 386 (1992) 63 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    A. Pomarol and R. Vega, Constraints on CP-violation in the Higgs sector from the rho parameter, Nucl. Phys. B 413 (1994) 3 [hep-ph/9305272] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].ADSGoogle Scholar
  42. [42]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Han, T. Li, S. Su and L.-T. Wang, Non-Decoupling MSSM Higgs Sector and Light Superpartners, JHEP 11 (2013) 053 [arXiv:1306.3229] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  45. [45]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  46. [46]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  47. [47]
    N.D. Christensen, T. Han, Z. Liu and S. Su, Low-Mass Higgs Bosons in the NMSSM and Their LHC Implications, JHEP 08 (2013) 019 [arXiv:1303.2113] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    M. Drees, M. Guchait and D.P. Roy, Signature of charged to neutral Higgs boson decay at the LHC in SUSY models, Phys. Lett. B 471 (1999) 39 [hep-ph/9909266] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  50. [50]
    R. Guedes, S. Moretti and R. Santos, Charged Higgs bosons in single top production at the LHC, JHEP 10 (2012) 119 [arXiv:1207.4071] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M. Hashemi, Single Top Events as a Source of Light Charged Higgs in the Fully Hadronic Final State at LHC, JHEP 05 (2013) 112 [arXiv:1305.2096] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    M. Hashemi, Observability of Light Charged Higgs Decay to Muon in Top Quark Pair Events at LHC, Eur. Phys. J. C 72 (2012) 1994 [arXiv:1109.5356] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    D. Das, L. Mitzka and W. Porod, Discovery of Charged Higgs through γγ final states, arXiv:1408.17 c04 [INSPIRE].
  54. [54]
    N. Kidonakis, Differential and total cross sections for top pair and single top production, arXiv:1205.3453 [INSPIRE].
  55. [55]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  59. [59]
    A. Avetisyan et al., Methods and Results for Standard Model Event Generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV Proton Colliders: A Snowmass Whitepaper, arXiv:1308.1636 [INSPIRE].
  60. [60]
    L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].
  61. [61]
    RooStats Team collaboration, G. Schott, RooStats for Searches, arXiv:1203.1547 [INSPIRE].
  62. [62]
  63. [63]
    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 717 (2013) 330 [arXiv:1205.3130] [INSPIRE].
  64. [64]
    F. Kling, T. Plehn and M. Takeuchi, Tagging single Tops, Phys. Rev. D 86 (2012) 094029 [arXiv:1207.4787] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations