Advertisement

Journal of High Energy Physics

, 2015:39 | Cite as

The impact of sterile neutrinos on CP measurements at long baselines

  • Raj Gandhi
  • Boris Kayser
  • Mehedi MasudEmail author
  • Suprabh Prakash
Open Access
Regular Article - Theoretical Physics

Abstract

With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass ∼1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. Our results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, in order that its highly anticipated results on CP violation in the lepton sector may be correctly interpreted.

Keywords

Neutrino Physics CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Thomson, talk at the Workshop on the Intermediate Neutrino Program (WINP 2015), Brookhaven National Laboratory, Upton New York U.S.A., February 4-6 2015 [INSPIRE] and online at https://indico.bnl.gov/conferenceDisplay.py?confId=918.
  2. [2]
    NOνA collaboration, A. Norman, The NOνA Experiment, The First 12 Months of Commissioning, Operations and Physics Data, AIP Conf. Proc. 1666 (2015) 110001 [INSPIRE].
  3. [3]
    C. Farnese, Some recent results from ICARUS, AIP Conf. Proc. 1666 (2015) 110002 [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    OPERA collaboration, S. Dusini, Observation of ν μν τ oscillations by the OPERA experiment, AIP Conf. Proc. 1666 (2015) 110003 [INSPIRE].
  5. [5]
    MINOS+ and MINOS collaborations, A.B. Sousa, First MINOS+ Data and New Results from MINOS, AIP Conf. Proc. 1666 (2015) 110004 [arXiv:1502.07715] [INSPIRE].
  6. [6]
    A.K. Ichikawa, High intensity neutrino beams, AIP Conf. Proc. 1666 (2015) 130001 [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    F.J.P. Soler, Neutrino Factories, AIP Conf. Proc. 1666 (2015) 130002 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    Y. Hayato, Future long-baseline neutrino oscillations: View from Asia, AIP Conf. Proc. 1666 (2015) 130003 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    LBNE collaboration, R.J. Wilson, Future Long-Baseline Neutrino Oscillations: View from North America, AIP Conf. Proc. 1666 (2015) 130004 [INSPIRE].
  10. [10]
    T. Patzak, Future long-baseline neutrino oscillations: View from Europe, AIP Conf. Proc. 1666 (2015) 130005 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    ICFA Neutrino Panel collaboration, K. Long, ICFA neutrino panel report, AIP Conf. Proc. 1666 (2015) 130006 [INSPIRE].
  12. [12]
    Intensity Frontier Neutrino Working Group, A. de Gouvêa et al., Working Group Report: Neutrinos, arXiv:1310.4340 [INSPIRE].
  13. [13]
    LSND collaboration, A.A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_u \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  14. [14]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].
  15. [15]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  17. [17]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].
  18. [18]
    J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [doi: 10.2172/1042577].
  19. [19]
    LBNE collaboration, C. Adams et al., The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe, arXiv:1307.7335 [INSPIRE].
  20. [20]
    LBNE collaboration, M. Bass et al., Baseline optimization for the measurement of CP-violation, mass hierarchy and θ 23 octant in a long-baseline neutrino oscillation experiment, Phys. Rev. D 91 (2015) 052015 [arXiv:1311.0212] [INSPIRE].
  21. [21]
    A. Donini, M. Lusignoli and D. Meloni, Telling three neutrinos from four neutrinos at the neutrino factory, Nucl. Phys. B 624 (2002) 405 [hep-ph/0107231] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Dighe and S. Ray, Signatures of heavy sterile neutrinos at long baseline experiments, Phys. Rev. D 76 (2007) 113001 [arXiv:0709.0383] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Donini, K.-i. Fuki, J. Lopez-Pavon, D. Meloni and O. Yasuda, The Discovery channel at the Neutrino Factory: ν μν τ pointing to sterile neutrinos, JHEP 08 (2009) 041 [arXiv:0812.3703] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    O. Yasuda, Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, arXiv:1004.2388 [INSPIRE].
  25. [25]
    D. Meloni, J. Tang and W. Winter, Sterile neutrinos beyond LSND at the Neutrino Factory, Phys. Rev. D 82 (2010) 093008 [arXiv:1007.2419] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  28. [28]
    B. Bhattacharya, A.M. Thalapillil and C.E.M. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE].ADSGoogle Scholar
  29. [29]
    MINOS collaboration, P. Adamson et al., Combined analysis of ν μ disappearance and ν μν e appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett. 112 (2014) 191801 [arXiv:1403.0867] [INSPIRE].
  30. [30]
    D. Hollander and I. Mocioiu, Minimal 3 + 2 sterile neutrino model at LBNE, Phys. Rev. D 91 (2015) 013002 [arXiv:1408.1749] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Esmaili, E. Kemp, O.L.G. Peres and Z. Tabrizi, Probing light sterile neutrinos in medium baseline reactor experiments, Phys. Rev. D 88 (2013) 073012 [arXiv:1308.6218] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Bishai, private communication (2014).Google Scholar
  40. [40]
    J. Zennamo, The Short-Baseline Neutrino Program, in 48 th Annual Fermilab Users Meeting, Fermilab Ramsey Auditorium, Batavia Illinois U.S.A., 9-11 June 2015, https://indico.fnal.gov/getFile.py/access?contribId=54&sessionId=23&resId=0& materialId=slides&confId=8982.

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Raj Gandhi
    • 1
    • 3
  • Boris Kayser
    • 2
  • Mehedi Masud
    • 1
    Email author
  • Suprabh Prakash
    • 1
  1. 1.Harish-Chandra Research InstituteJhunsi, AllahabadIndia
  2. 2.Theoretical Physics Department, FermilabBataviaU.S.A.
  3. 3.Neutrino Division, FermilabBataviaU.S.A.

Personalised recommendations