Journal of High Energy Physics

, 2015:29 | Cite as

General mirror pairs for gauged linear sigma models

Open Access
Regular Article - Theoretical Physics
  • 86 Downloads

Abstract

We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

Keywords

Conformal Field Models in String Theory Superstring Vacua 

References

  1. [1]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].MATHMathSciNetGoogle Scholar
  5. [5]
    L. Borisov, Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties, alg-geom/9310001.
  6. [6]
    D.R. Morrison and M.R. Plesser, Towards mirror symmetry as duality for two-dimensional Abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  7. [7]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  8. [8]
    P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    A.C. Avram, M. Kreuzer, M. Mandelberg and H. Skarke, The web of Calabi-Yau hypersurfaces in toric varieties, Nucl. Phys. B 505 (1997) 625 [hep-th/9703003] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    I.M. Gelfand, M.M. Kapranov and A.V. Zelevinski, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston MA U.S.A. (1994).MATHCrossRefGoogle Scholar
  11. [11]
    P. Berglund and T. Hubsch, A generalized construction of mirror manifolds, Nucl. Phys. B 393 (1993) 377 [hep-th/9201014] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 [hep-th/9409188] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  13. [13]
    D.A. Cox, J.B. Little and H.K. Schenck, Toric varities, Graduate Studies in Mathematics 124, Amer. Math. Soc., Providence RI U.S.A. (2010).Google Scholar
  14. [14]
    P.S. Aspinwall, I.V. Melnikov and M.R. Plesser, (0, 2) elephants, JHEP 01 (2012) 060 [arXiv:1008.2156] [INSPIRE].
  15. [15]
    L.A. Borisov, L. Chen and G.G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193 [math/0309229].
  16. [16]
    P.S. Aspinwall and M.R. Plesser, Decompactifications and massless D-branes in hybrid models, JHEP 07 (2010) 078 [arXiv:0909.0252] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, S.-T. Yau ed., International Press, (1992) [hep-th/9112056] [INSPIRE].
  18. [18]
    V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, in Integer points in polyhedrageometry, number theory, representation theory, algebra, optimization, statistics, Contemp. Math. 452, Amer. Math. Soc., Providence RI U.S.A. (2008), pg. 35 [math/0703456] [INSPIRE].
  19. [19]
    B.R. Greene, D.R. Morrison and C. Vafa, A geometric realization of confinement, Nucl. Phys. B 481 (1996) 513 [hep-th/9608039] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    N. Addington and P.S. Aspinwall, Categories of massless D-branes and del Pezzo surfaces, JHEP 07 (2013) 176 [arXiv:1305.5767] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B 407 (1993) 115 [hep-th/9304045] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial divisor mirror map, Internat. Math. Res. Notices 1993 319 [alg-geom/9309007] [INSPIRE].
  23. [23]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990) 155.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    K. Hori and J. Walcher, D-branes from matrix factorizations, Comptes Rendus Physique 5 (2004) 1061 [hep-th/0409204] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, arithmetic, and geometry: in honor of Yu.I. Manin. Vol. II, Progr. Math. 270, Birkhäuser, Boston MA U.S.A. (2009), pg. 503 [math/0503632].
  27. [27]
    A.G. Kuznetsov, Derived category of a cubic threefold and the variety V 14, Tr. Mat. Inst. Steklova 246 (2004) 183 [math/0303037].
  28. [28]
    D. Gepner, Exactly solvable string compactifications on manifolds of SU(N ) holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    N. Addington and P.S. Aspinwall, to appear.Google Scholar
  30. [30]
    M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, arXiv:0906.0796.
  31. [31]
    L.A. Borisov, Berglund-Hübsch mirror symmetry via vertex algebras, Commun. Math. Phys. 320 (2013) 73 [arXiv:1007.2633] [INSPIRE].MATHCrossRefADSGoogle Scholar
  32. [32]
    P. Clarke, Duality for toric Landau-Ginzburg models, arXiv:0803.0447 [INSPIRE].
  33. [33]
    D. Favero and T.L. Kelly, Toric mirror constructions and derived equivalence, arXiv:1412.1354 [INSPIRE].
  34. [34]
    B.R. Greene and M.R. Plesser, Mirror manifolds: a brief review and progress report, hep-th/9110014 [INSPIRE].
  35. [35]
    P.S. Aspinwall, D.R. Morrison and M. Gross, Stable singularities in string theory, Commun. Math. Phys. 178 (1996) 115 [hep-th/9503208] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  36. [36]
    A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in Abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  37. [37]
    N. Addington, The derived category of the intersection of four quadrics, arXiv:0904.1764.
  38. [38]
    B.R. Greene and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008) 1340 [math/0510670].
  40. [40]
    M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992) 137 [hep-th/9202039] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  41. [41]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Departments of Mathematics and PhysicsDuke UniversityDurhamU.S.A.

Personalised recommendations