General mirror pairs for gauged linear sigma models

Abstract

We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  ADS  Google Scholar 

  2. [2]

    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  3. [3]

    D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  4. [4]

    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  5. [5]

    L. Borisov, Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties, alg-geom/9310001.

  6. [6]

    D.R. Morrison and M.R. Plesser, Towards mirror symmetry as duality for two-dimensional Abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

  8. [8]

    P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. [9]

    A.C. Avram, M. Kreuzer, M. Mandelberg and H. Skarke, The web of Calabi-Yau hypersurfaces in toric varieties, Nucl. Phys. B 505 (1997) 625 [hep-th/9703003] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  10. [10]

    I.M. Gelfand, M.M. Kapranov and A.V. Zelevinski, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston MA U.S.A. (1994).

    MATH  Book  Google Scholar 

  11. [11]

    P. Berglund and T. Hubsch, A generalized construction of mirror manifolds, Nucl. Phys. B 393 (1993) 377 [hep-th/9201014] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  12. [12]

    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 [hep-th/9409188] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  13. [13]

    D.A. Cox, J.B. Little and H.K. Schenck, Toric varities, Graduate Studies in Mathematics 124, Amer. Math. Soc., Providence RI U.S.A. (2010).

  14. [14]

    P.S. Aspinwall, I.V. Melnikov and M.R. Plesser, (0, 2) elephants, JHEP 01 (2012) 060 [arXiv:1008.2156] [INSPIRE].

  15. [15]

    L.A. Borisov, L. Chen and G.G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193 [math/0309229].

  16. [16]

    P.S. Aspinwall and M.R. Plesser, Decompactifications and massless D-branes in hybrid models, JHEP 07 (2010) 078 [arXiv:0909.0252] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  17. [17]

    E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, S.-T. Yau ed., International Press, (1992) [hep-th/9112056] [INSPIRE].

  18. [18]

    V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, in Integer points in polyhedrageometry, number theory, representation theory, algebra, optimization, statistics, Contemp. Math. 452, Amer. Math. Soc., Providence RI U.S.A. (2008), pg. 35 [math/0703456] [INSPIRE].

  19. [19]

    B.R. Greene, D.R. Morrison and C. Vafa, A geometric realization of confinement, Nucl. Phys. B 481 (1996) 513 [hep-th/9608039] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  20. [20]

    N. Addington and P.S. Aspinwall, Categories of massless D-branes and del Pezzo surfaces, JHEP 07 (2013) 176 [arXiv:1305.5767] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  21. [21]

    P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B 407 (1993) 115 [hep-th/9304045] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  22. [22]

    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial divisor mirror map, Internat. Math. Res. Notices 1993 319 [alg-geom/9309007] [INSPIRE].

  23. [23]

    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  24. [24]

    L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990) 155.

    MATH  MathSciNet  Article  Google Scholar 

  25. [25]

    K. Hori and J. Walcher, D-branes from matrix factorizations, Comptes Rendus Physique 5 (2004) 1061 [hep-th/0409204] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  26. [26]

    D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, arithmetic, and geometry: in honor of Yu.I. Manin. Vol. II, Progr. Math. 270, Birkhäuser, Boston MA U.S.A. (2009), pg. 503 [math/0503632].

  27. [27]

    A.G. Kuznetsov, Derived category of a cubic threefold and the variety V 14, Tr. Mat. Inst. Steklova 246 (2004) 183 [math/0303037].

  28. [28]

    D. Gepner, Exactly solvable string compactifications on manifolds of SU(N ) holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  29. [29]

    N. Addington and P.S. Aspinwall, to appear.

  30. [30]

    M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, arXiv:0906.0796.

  31. [31]

    L.A. Borisov, Berglund-Hübsch mirror symmetry via vertex algebras, Commun. Math. Phys. 320 (2013) 73 [arXiv:1007.2633] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  32. [32]

    P. Clarke, Duality for toric Landau-Ginzburg models, arXiv:0803.0447 [INSPIRE].

  33. [33]

    D. Favero and T.L. Kelly, Toric mirror constructions and derived equivalence, arXiv:1412.1354 [INSPIRE].

  34. [34]

    B.R. Greene and M.R. Plesser, Mirror manifolds: a brief review and progress report, hep-th/9110014 [INSPIRE].

  35. [35]

    P.S. Aspinwall, D.R. Morrison and M. Gross, Stable singularities in string theory, Commun. Math. Phys. 178 (1996) 115 [hep-th/9503208] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  36. [36]

    A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in Abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  37. [37]

    N. Addington, The derived category of the intersection of four quadrics, arXiv:0904.1764.

  38. [38]

    B.R. Greene and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  39. [39]

    A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008) 1340 [math/0510670].

  40. [40]

    M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992) 137 [hep-th/9202039] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  41. [41]

    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul S. Aspinwall.

Additional information

ArXiv ePrint: 1507.00301

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aspinwall, P.S., Plesser, M.R. General mirror pairs for gauged linear sigma models. J. High Energ. Phys. 2015, 29 (2015). https://doi.org/10.1007/JHEP11(2015)029

Download citation

Keywords

  • Conformal Field Models in String Theory
  • Superstring Vacua