Journal of High Energy Physics

, 2015:20 | Cite as

Non-geometric fluxes and mixed-symmetry potentials

  • E.A. Bergshoeff
  • V.A. Penas
  • F. Riccioni
  • S. Risoli
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the relation between generalised fluxes and mixed-symmetry potentials. We refer to the fluxes that cannot be described even locally in the framework of supergravity as ‘non-geometric’. We first consider the NS fluxes, and point out that the non-geometric R flux is dual to a mixed-symmetry potential with a set of nine antisym-metric indices. We then consider the T-duality family of fluxes whose prototype is the Scherk-Schwarz reduction of the S-dual of the RR scalar of IIB supergravity. Using the relation with mixed-symmetry potentials, we are able to give a complete classification of these fluxes, including the ones that are non-geometric. The non-geometric fluxes again turn out to be dual to potentials containing nine antisymmetric indices. Our analysis suggests that all these fluxes can be understood in the context of double field theory, although for the non-geometric ones one expects a violation of the strong constraint.

Keywords

Flux compactifications Supergravity Models 

References

  1. [1]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    H. Samtleben and M. Weidner, The Maximal D = 7 supergravities, Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  9. [9]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  10. [10]
    W. Siegel, Manifest duality in low-energy superstrings, in the proceedings of Strings93, Berkeley, California, U.S.A., May 24-29 1993, Stony Brook University, Stony Brook New York U.S.A. (1993) [ITP-SB-93-050] [hep-th/9308133] [INSPIRE].
  11. [11]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    O. Hohm and S.K. Kwak, Massive Type II in Double Field Theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of Type II Strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].MATHCrossRefADSGoogle Scholar
  19. [19]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].MATHCrossRefADSGoogle Scholar
  23. [23]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Chatzistavrakidis and F.F. Gautason, U-dual branes and mixed symmetry tensor fields, Fortsch. Phys. 62 (2014) 743 [arXiv:1404.7635] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].MATHCrossRefADSGoogle Scholar
  29. [29]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  31. [31]
    D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    M. Graña and D. Marques, Gauged Double Field Theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    D. Geissbuhler, D. Marques, C. Núñez and V.A. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and Generalized Geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, work in progress.Google Scholar
  38. [38]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric Domain Walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].ADSGoogle Scholar
  39. [39]
    U. Danielsson and G. Dibitetto, Type IIB on S 3 × S 3 through Q and P fluxes, arXiv:1507.04476 [INSPIRE].
  40. [40]
    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • E.A. Bergshoeff
    • 1
  • V.A. Penas
    • 1
  • F. Riccioni
    • 2
  • S. Risoli
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Dipartimento di Fisica and INFN Sezione di RomaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations