AdS3 holography for 1/4 and 1/8 BPS geometries

Open Access
Regular Article - Theoretical Physics

Abstract

Recently a new class of 1/8-BPS regular geometries in type IIB string theory was constructed in arXiv:1503.01463. In this paper we provide a precise description of the semiclassical states dual, in the AdS/CFT sense, to these geometries. In explicit examples we show that the holographic 1-point functions and the Ryu-Takayanagi’s Entanglement Entropy for a single small interval match the corresponding CFT calculations performed by using the proposed dual states. We also discuss several new examples of such precision holography analysis in the 1/4-BPS sector and provide an explicit proof that the small interval derivation of the Entanglement Entropy used in arXiv:1405.6185 is fully covariant.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Black Holes 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    M. Taylor, Matching of correlators in AdS 3 /CFT 2, JHEP 06 (2008) 010 [arXiv:0709.1838] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].Google Scholar
  17. [17]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    S. Giusto and R. Russo, Entanglement entropy and D1-D5 geometries, Phys. Rev. D 90 (2014) 066004 [arXiv:1405.6185] [INSPIRE].ADSGoogle Scholar
  20. [20]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1-D5 CFT, JHEP 01 (2015) 071 [arXiv:1410.4543] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S N(X): symmetries and interactions, Nucl. Phys. B 577 (2000) 47 [hep-th/9907144] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  26. [26]
    K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett. 98 (2007) 071601 [hep-th/0609154] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP 03 (2014) 007 [arXiv:1311.5536] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 11 (2009) P11001 [arXiv:0905.2069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 01 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetGoogle Scholar
  32. [32]
    O. Lunin and S.D. Mathur, Correlation functions for M N /S N orbifolds, Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  33. [33]
    O. Lunin and S.D. Mathur, Three point functions for M N /S N orbifolds with N = 4 supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  34. [34]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1-D5 CFT away from the orbifold point, JHEP 06 (2010) 031 [arXiv:1002.3132] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1-D5 CFT, JHEP 06 (2010) 032 [arXiv:1003.2746] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in M N /S N orbifold CFTs, Phys. Rev. D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].ADSGoogle Scholar
  37. [37]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev. D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the twist operator in the D1-D5 CFT, JHEP 08 (2014) 064 [arXiv:1405.0259] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    Z. Carson, S.D. Mathur and D. Turton, Bogoliubov coefficients for the twist operator in the D1-D5 CFT, Nucl. Phys. B 889 (2014) 443 [arXiv:1406.6977] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev. D 91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C.T. Asplund and S.G. Avery, Evolution of entanglement entropy in the D1-D5 brane system, Phys. Rev. D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructinghairfor the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS3 and 2D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  49. [49]
    K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    K. Skenderis and M. Taylor, Holographic Coulomb branch vevs, JHEP 08 (2006) 001 [hep-th/0604169] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  52. [52]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simón, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar
  53. [53]
    V. Balasubramanian, B. Czech, V.E. Hubeny, K. Larjo, M. Rangamani and J. Simón, Typicality versus thermality: an analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [INSPIRE].MATHCrossRefADSGoogle Scholar
  54. [54]
    N. Lashkari and J. Simón, From state distinguishability to effective bulk locality, JHEP 06 (2014) 038 [arXiv:1402.4829] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2D CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, arXiv:1501.05315 [INSPIRE].
  58. [58]
    E. Perlmutter, Virasoro conformal blocks in closed form, JHEP 08 (2015) 088 [arXiv:1502.07742] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    P. Caputa, V. Jejjala and H. Soltanpanahi, Entanglement entropy of extremal BTZ black holes, Phys. Rev. D 89 (2014) 046006 [arXiv:1309.7852] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP 05 (2012) 014 [arXiv:1112.6413] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Stefano Giusto
    • 1
    • 2
  • Emanuele Moscato
    • 3
  • Rodolfo Russo
    • 3
  1. 1.Dipartimento di Fisica ed Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.I.N.F.N. Sezione di PadovaPadovaItaly
  3. 3.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations