Advertisement

Journal of High Energy Physics

, 2014:116 | Cite as

Transverse momentum resummation for Higgs production via gluon fusion in the MSSM

  • Robert V. Harlander
  • Hendrik Mantler
  • Marius Wiesemann
Open Access
Regular Article - Theoretical Physics

Abstract

The resummed transverse momentum distribution of supersymmetric Higgs bosons produced through gluon fusion at NLO + NLL is presented, including the exact quark and squark mass dependences. Considering various MSSM scenarios, we compare our results to previous ones within the POWHEG approach. We analyze the impact of the bottom loop which becomes the dominant contribution to the gluon fusion cross section for a wide range of the parameter space for the pseudo-scalar and heavy Higgs.

Keywords

Higgs Physics Supersymmetric Standard Model Resummation QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  4. [4]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  5. [5]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  6. [6]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].
  15. [15]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    R. Harlander, Supersymmetric Higgs production at the Large Hadron Collider, Eur. Phys. J. C 33 (2004) S454 [hep-ph/0311005] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev. D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, arXiv:1408.6836 [INSPIRE].
  37. [37]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    S. Catani and M. Grazzini, HNNLO: a Monte Carlo program to compute Higgs boson production at hadron colliders, PoS(RAD COR 2007)046 [arXiv:0802.1410] [INSPIRE].
  40. [40]
    S. Catani, E. D’Emilio and L. Trentadue, The gluon form-factor to higher orders: gluon gluon annihilation at small Q-transverse, Phys. Lett. B 211 (1988) 335 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    C.P. Yuan, Kinematics of the Higgs boson at hadron colliders: NLO QCD gluon resummation, Phys. Lett. B 283 (1992) 395 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    R.P. Kauffman, Higher order corrections to Higgs boson p T, Phys. Rev. D 45 (1992) 1512 [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q(T) spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the H → 2γ, HWWlνlν and HZZ →4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    K.J. Ozeren, Analytic results for Higgs production in bottom fusion, JHEP 11 (2010) 084 [arXiv:1010.2977] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    R.V. Harlander and M. Steinhauser, Hadronic Higgs production and decay in supersymmetry at next-to-leading order, Phys. Lett. B 574 (2003) 258 [hep-ph/0307346] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    R.V. Harlander and F. Hofmann, Pseudo-scalar Higgs production at next-to-leading order SUSY-QCD, JHEP 03 (2006) 050 [hep-ph/0507041] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    M. Mühlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh, H in the minimal supersymmetric standard model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    R.V. Harlander, F. Hofmann and H. Mantler, Supersymmetric Higgs production in gluon fusion, JHEP 02 (2011) 055 [arXiv:1012.3361] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    M. Muhlleitner, H. Rzehak and M. Spira, SUSY-QCD corrections to MSSM Higgs boson production via gluon fusion, PoS(RADCOR2009)043 [arXiv:1001.3214] [INSPIRE].
  67. [67]
    G. Degrassi, S. Di Vita and P. Slavich, NLO QCD corrections to pseudoscalar Higgs production in the MSSM, JHEP 08 (2011) 128 [arXiv:1107.0914] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    G. Degrassi, S. Di Vita and P. Slavich, On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM, Eur. Phys. J. C 72 (2012) 2032 [arXiv:1204.1016] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Computer Physics Communications 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  70. [70]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. St al, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571 [INSPIRE].
  71. [71]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    U. Langenegger, M. Spira, A. Starodumov and P. Trueb, SM and MSSM Higgs boson production: spectra at large transverse momentum, JHEP 06 (2006) 035 [hep-ph/0604156] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t}b{H}^{+} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    J. Guasch, P. Hafliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev. D 68 (2003) 115001 [hep-ph/0305101] [INSPIRE].ADSGoogle Scholar
  79. [79]
    D. Noth and M. Spira, Supersymmetric Higgs Yukawa couplings to bottom quarks at next-to-next-to-leading order, JHEP 06 (2011) 084 [arXiv:1001.1935] [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    D. Noth and M. Spira, Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    L. Mihaila and C. Reisser, O(α s2) corrections to fermionic Higgs decays in the MSSM, JHEP 08 (2010) 021 [arXiv:1007.0693] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    E. Bagnaschi et al., Towards precise predictions for Higgs-boson production in the MSSM, JHEP 06 (2014) 167 [arXiv:1404.0327] [INSPIRE].CrossRefADSGoogle Scholar
  83. [83]
    M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner and G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  85. [85]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [arXiv:1308.1841] [INSPIRE].ADSGoogle Scholar
  88. [88]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [arXiv:1311.6736] [INSPIRE].Google Scholar
  90. [90]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  91. [91]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].CrossRefADSGoogle Scholar
  92. [92]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  93. [93]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α t2) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].CrossRefADSGoogle Scholar
  96. [96]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].CrossRefADSGoogle Scholar
  97. [97]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].CrossRefADSGoogle Scholar
  98. [98]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [INSPIRE].CrossRefADSGoogle Scholar
  99. [99]
    M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE].
  100. [100]
    S. Frixione, New developments in NLOwPS, talk given at the 7 th Higgs XS WG meeting, December 5–6, CERN, Switzerland (2012).Google Scholar
  101. [101]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].CrossRefADSGoogle Scholar
  102. [102]
    S. Frixione, Quark mass effects in ggH with MC@NLO, talk given at the ggF meeting on Higgs p T, July 23, CERN, Switzerland (2013).Google Scholar
  103. [103]
    A. Vicini, Quark-mass effects in POWHEG and Hres results, talk given at the ggF meeting on Higgs p T, July 23, CERN, Switzerland (2013).Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Robert V. Harlander
    • 1
  • Hendrik Mantler
    • 2
  • Marius Wiesemann
    • 3
  1. 1.Fachbereich C, Bergische Universität WuppertalWuppertalGermany
  2. 2.TH Division, Physics Department, CERNGeneva 23Switzerland
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations