Advertisement

Journal of High Energy Physics

, 2014:115 | Cite as

A new AdS 4/CFT 3 dual with extended SUSY and a spectral flow

  • Yolanda LozanoEmail author
  • Niall T. Macpherson
Open Access
Regular Article - Theoretical Physics

Abstract

We construct a new AdS 4 background in Type IIB supergravity by means of a non-Abelian T-duality transformation on the Type IIA dual of ABJM. The analysis of probe and particle-like branes suggests a dual CFT in which each of the gauge groups is doubled. A common feature of non-Abelian T-duality is that in the absence of any global information coming from String Theory it gives rise to non-compact dual backgrounds, with coordinates living in the Lie algebra of the Lie group involved in the dualization. In backgrounds with CFT duals this poses obvious problems to the CFTs. In this paper we show that for the new AdS 4 background the gauge groups of the associated dual CFT undergo a spectral flow as the non-compact internal direction runs from 0 to infinity, which resembles Seiberg duality in \( \mathcal{N} \) = 1. This phenomenon, very reminiscent of the cascade, provides an interpretation in the CFT for the running of the non-compact coordinate, and suggests that at the end of the flow the extra charges disappear and the dual CFT is described by a 2-node quiver very similar to ABJM, albeit with reduced supersymmetry.

Keywords

AdS-CFT Correspondence String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4 /CFT 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Armoni and A. Naqvi, A Non-Supersymmetric Large-N 3D CFT And Its Gravity Dual, JHEP 09 (2008) 119 [arXiv:0806.4068] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Ooguri and C.-S. Park, Superconformal Chern-Simons Theories and the Squashed Seven Sphere, JHEP 11 (2008) 082 [arXiv:0808.0500] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CFT 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Evslin and S. Kuperstein, ABJ(M) and Fractional M2s with Fractional M2 Charge, JHEP 12 (2009) 016 [arXiv:0906.2703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. Martelli and J. Sparks, AdS 4 /CFT 3 duals from M2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D.L. Jafferis, Quantum corrections to \( \mathcal{N} \) = 2 Chern-Simons theories with flavor and their AdS 4 duals, JHEP 08 (2013) 046 [arXiv:0911.4324] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    O. Bergman and G. Lifschytz, Branes and massive IIA duals of 3d CFTs, JHEP 04 (2010) 114 [arXiv:1001.0394] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    G. Itsios, Y. Lozano, E. O Colgain and K. Sfetsos, Non-Abelian T-duality and consistent truncations in type-II supergravity, JHEP 08 (2012) 132 [arXiv:1205.2274] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Lozano, E. O Colgain, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond Fields and Coset Geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Lozano, E.O. Colgain, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS 6 via T Duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Brandhuber and Y. Oz, The D-4 - D-8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    M. Cvetič, H. Lü, C.N. Pope and J.F. Vazquez-Poritz, AdS in warped space-times, Phys. Rev. D 62 (2000) 122003 [hep-th/0005246] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Y. Lozano, E.O. Colgain and D. Rodriguez-Gomez, Hints of 5d Fixed Point Theories from Non-Abelian T-duality, arXiv:1311.4842 [INSPIRE].
  33. [33]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, arXiv:1406.0852 [INSPIRE].
  36. [36]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On Non-Abelian T-duality and new N =1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1 [arXiv:1301.6755] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Barranco, J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, G-structures and Flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, Dualising the Baryonic Branch: Dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys. B 884 (2014) 696 [arXiv:1312.4945] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Caceres, N.T. Macpherson and C. Núñez, New Type IIB Backgrounds and Aspects of Their Field Theory Duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N.T. Macpherson, Non-Abelian T-duality, G 2 -structure rotation and holographic duals of N =1 Chern-Simons theories, JHEP 11 (2013) 137 [arXiv:1310.1609] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Cvetič, H. Lü and C.N. Pope, Consistent warped space Kaluza-Klein reductions, half maximal gauged supergravities and CP**n constructions, Nucl. Phys. B 597 (2001) 172 [hep-th/0007109] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Sfetsos, NonAbelian duality, parafermions and supersymmetry, Phys. Rev. D 54 (1996) 1682 [hep-th/9602179] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    F. Benini, A chiral cascade via backreacting D7-branes with flux, JHEP 10 (2008) 051 [arXiv:0710.0374] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    E. Alvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Some global aspects of duality in string theory, Nucl. Phys. B 415 (1994) 71 [hep-th/9309039] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    Y. Lozano, N.T. Macpherson and E.O. Colgain, work in progress.Google Scholar
  49. [49]
    Y. Kosmann, A note on Lie-Lorentz derivatives, Annali di Mat. Pura Appl. (IV) 91 (1972) 317.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT correspondence, JHEP 06 (2002) 047 [hep-th/0202150] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    O. Aharony, A note on the holographic interpretation of string theory backgrounds with varying flux, JHEP 03 (2001) 012 [hep-th/0101013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane Charges in Gravitational Duals of 2 + 1 Dimensional Gauge Theories and Duality Cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  62. [62]
    I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills from giant gravitons, JHEP 12 (2007) 006 [hep-th/0606087] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP 03 (2007) 031 [hep-th/0606088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    D. Martelli and J. Sparks, Dual Giant Gravitons in Sasaki-Einstein Backgrounds, Nucl. Phys. B 759 (2006) 292 [hep-th/0608060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    O. Bergman and D. Rodriguez-Gomez, Probing the Higgs branch of 5d fixed point theories with dual giant gravitons in AdS 6, JHEP 12 (2012) 047 [arXiv:1210.0589] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    T. Nishioka and T. Takayanagi, Fuzzy Ring from M2-brane Giant Torus, JHEP 10 (2008) 082 [arXiv:0808.2691] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    A. Hamilton, J. Murugan, A. Prinsloo and M. Strydom, A note on dual giant gravitons in AdS 4 × CP 3, JHEP 04 (2009) 132 [arXiv:0901.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  70. [70]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and N = 6 Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  76. [76]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  77. [77]
    C.M. Hull, U duality and BPS spectrum of super Yang-Mills theory and M-theory, JHEP 07 (1998) 018 [hep-th/9712075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  79. [79]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Gabella, D. Martelli, A. Passias and J. Sparks, \( \mathcal{N} \) = 2 supersymmetric AdS 4 solutions of M-theory, Commun. Math. Phys. 325 (2014) 487 [arXiv:1207.3082] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  83. [83]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  84. [84]
    S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    I. Bakhmatov, On AdS 4 × CP 3 T-duality, Nucl. Phys. B 847 (2011) 38 [arXiv:1011.0985] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  86. [86]
    B.E.W. Nilsson and C.N. Pope, Hopf Fibration of Eleven-dimensional Supergravity, Class. Quant. Grav. 1 (1984) 499 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Oviedo,OviedoSpain
  2. 2.Department of PhysicsSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations