Journal of High Energy Physics

, 2014:79 | Cite as

Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO

  • F. Maltoni
  • E. Vryonidou
  • M. Zaro
Open Access
Regular Article - Theoretical Physics


The observation of double and triple scalar boson production at hadron colliders could provide key information on the Higgs self couplings and the potential. As for single Higgs production the largest rates for multiple Higgs production come from gluon gluon fusion processes mediated by a top-quark loop. However, at variance with single Higgs production, top-quark mass and width effects from the loops cannot be neglected. Computations including the exact top-quark mass dependence are only available at the leading order, and currently predictions at higher orders are obtained by means of approximations based on the Higgs-gluon effective field theory (HEFT). In this work we present a reweighting technique that, starting from events obtained via the MC@NLO method in the HEFT, allows to exactly include the top-quark mass and width effects coming from one- and two-loop amplitudes. We describe our approach and apply it to double Higgs production at NLO in QCD, computing the needed one-loop amplitudes and using approximations for the unknown two-loop ones. The results are compared to other approaches used in the literature, arguing that they provide more accurate predictions for distributions and for total rates as well. As a novel application of our procedure we present predictions at NLO in QCD for triple Higgs production at hadron colliders.


Higgs Physics QCD Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  5. [5]
    CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, CMS-HIG-13-004 (2014).
  6. [6]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s} \) =7 and 8 TeV, CMS-HIG-13-006 (2013).
  7. [7]
    CMS collaboration, Search for SM Higgs in WH to WWW to 3l 3nu, CMS-HIG-13-009 (2013).
  8. [8]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s} \) =7 and 8 TeV, ATLAS-CONF-2013-009 (2013).
  9. [9]
    ATLAS collaboration, Search for a Standard Model Higgs boson in Hμμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).
  10. [10]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  11. [11]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  12. [12]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  13. [13]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].ADSGoogle Scholar
  14. [14]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar
  16. [16]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair Production and Heavy Higgs Searches in the Two-Higgs-Doublet Model of Type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. Hespel, D. Lopez-Val and E. Vryonidou, Higgs pair production via gluon fusion in the Two-Higgs-Doublet Model, JHEP 09 (2014) 124 [arXiv:1407.0281] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010) 115002 [arXiv:1009.4670] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double Neutral Higgs production in the Two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    U. Ellwanger, Higgs pair production in the NMSSM at the LHC, JHEP 08 (2013) 077 [arXiv:1306.5541] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G.D. Kribs and A. Martin, Enhanced di-Higgs Production through Light Colored Scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Top Partners and Higgs Boson Production, Phys. Rev. D 90 (2014) 035016 [arXiv:1406.3349] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair production in littlest Higgs model with T-parity, Phys. Rev. D 76 (2007) 017702 [arXiv:0705.3392] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.J. Dolan, C. Englert and M. Spannowsky, New Physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E.L. Berger, S.B. Giddings, H. Wang and H. Zhang, Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry, Phys. Rev. D 90 (2014) 076004 [arXiv:1406.6054] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Contino et al., Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Pierce, J. Thaler and L.-T. Wang, Disentangling Dimension Six Operators through Di-Higgs Boson Production, JHEP 05 (2007) 070 [hep-ph/0609049] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Liu, X.-P. Wang and S.-h. Zhu, Discovering extra Higgs boson via pair production of the SM-like Higgs bosons, arXiv:1310.3634 [INSPIRE].
  38. [38]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed - selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Gouzevitch et al., Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs Pair Production: Improved Description by Matrix Element Matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Slawinska, W. van den Wollenberg, B. van Eijk and S. Bentvelsen, Phenomenology of the trilinear Higgs coupling at proton-proton colliders, arXiv:1408.5010 [INSPIRE].
  48. [48]
    R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs Interactions at a Linear Collider, JHEP 02 (2014) 006 [arXiv:1309.7038] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Liu-Sheng et al., NNLO QCD corrections to Higgs pair production via vector boson fusion at hadron colliders, Phys. Rev. D 89 (2014) 073001 [arXiv:1401.7754] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  53. [53]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Computer Physics Communications 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    P. Maierhöfer and A. Papaefstathiou, Higgs Boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FEYNRULES, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, arXiv:1406.3030 [INSPIRE].
  75. [75]
    B. Page and R. Pittau, R 2 vertices for the effective ggH theory, JHEP 09 (2013) 078 [arXiv:1307.6142] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  80. [80]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  83. [83]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  87. [87]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 Event Generator, arXiv:1010.0819 [INSPIRE].
  88. [88]
    R. Harlander, Supersymmetric Higgs production at the Large Hadron Collider, Eur. Phys. J. C 33 (2004) S454 [hep-ph/0311005] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, arXiv:1408.6836 [INSPIRE].
  95. [95]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, and CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations