Journal of High Energy Physics

, 2014:76 | Cite as

Thresholds of large N factorization in CFT4: exploring bulk spacetime in AdS5

Open Access
Regular Article - Theoretical Physics


Large N factorization ensures that, for low-dimension gauge-invariant operators in the half-BPS sector of \( \mathcal{N}=4 \) SYM, products of holomorphic traces have vanishing correlators with single anti-holomorphic traces. This vanishing is necessary to consistently map trace operators in the CFT4 to a Fock space of graviton oscillations in the dual AdS5. We investigate the regimes at which the CFT correlators do not vanish but become of order one in the large N limit, which we call a factorization threshold. Quite generally, we find the threshold to be when the product of the two holomorphic operator dimensions is of order N log N . Our analysis considers extremal and non-extremal correlators and correlators in states dual to LLM backgrounds, and we observe intriguing similarities between the the energy-dependent running coupling of non-abelian gauge theories and our threshold equations. Finally, we discuss some interpretations of the threshold within the bulk AdS spacetime.


AdS-CFT Correspondence Nonperturbative Effects 1/N Expansion 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  4. [4]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D =4, N =4 SYM at large-N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MATHMathSciNetGoogle Scholar
  5. [5]
    K.A. Intriligator, Bonus symmetries of N =4 super Yang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of N =4 Super Yang-Mills, Nucl. Phys. B 559 (1999) 165 [hep-th/9905020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Eden, P.S. Howe and P.C. West, Nilpotent invariants in N =4 SYM, Phys. Lett. B 463 (1999) 19 [hep-th/9905085] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Petkou and K. Skenderis, A nonrenormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Explicit construction of nilpotent covariants in N =4 SYM, Nucl. Phys. B 571 (2000) 71 [hep-th/9910011] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    P.J. Heslop and P.S. Howe, OPEs and three-point correlators of protected operators in N =4 SYM, Nucl. Phys. B 626 (2002) 265 [hep-th/0107212] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A new double scaling limit of N =4 super Yang-Mills theory and PP wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N =4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Dhar, G. Mandal and M. Smedbäck, From gravitons to giants, JHEP 03 (2006) 031 [hep-th/0512312] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Jevicki and S. Ramgoolam, Noncommutative gravity from the AdS/CFT correspondence, JHEP 04 (1999) 032 [hep-th/9902059] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  23. [23]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    J. Maldacena, The gauge/gravity duality, arXiv:1106.6073 [INSPIRE].
  25. [25]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. de Mello Koch, T.K. Dey, N. Ives and M. Stephanou, Correlators of operators with a large R-charge, JHEP 08 (2009) 083 [arXiv:0905.2273] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W Function (1996),∼djeffrey/Offprints/W-adv-cm.pdf.
  28. [28]
    R.M. Corless, D.J. Jeffrey and D.E. Knuth, A Sequence of Series for the Lambert W Function (1997),∼rcorless/frames/PAPERS/LambertW/
  29. [29]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.I. Alekseev, Strong coupling constant to four loops in the analytic approach to QCD, Few Body Syst. 32 (2003) 193 [hep-ph/0211339] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The Library of Babel: On the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T.W. Brown, R. de Mello Koch, S. Ramgoolam and N. Toumbas, Correlators, probabilities and topologies in N =4 SYM, JHEP 03 (2007) 072 [hep-th/0611290] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  38. [38]
    S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D =1 Strings, Mod. Phys. Lett. A 5 (1990) 1639 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: Leading eikonal and beyond, JHEP 11 (2010) 100 [arXiv:1008.4773] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Arnold, P. Szepietowski, D. Vaman and G. Wong, Tidal stretching of gravitons into classical strings: application to jet quenching with AdS/CFT, JHEP 02 (2013) 130 [arXiv:1212.3321] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    R. de Mello Koch, S. Graham and I. Messamah, Higher loop nonplanar anomalous dimensions from symmetry, JHEP 02 (2014) 125 [arXiv:1312.6227] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative quantum gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    W. Fulton and J. Harris, Representation Theory: A First Course, Springer-Verlag, Heidelberg Germany (1991).MATHGoogle Scholar
  47. [47]
    P. Caputa and B.A.E. Mohammed, From Schurs to Giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations