Journal of High Energy Physics

, 2014:52 | Cite as

Updated fit to three neutrino mixing: status of leptonic CP violation

  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics

Abstract

We present a global analysis of solar, atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino oscillations based on data available in summer 2014. We provide the allowed ranges of the six oscillation parameters and show that their determination is stable with respect to uncertainties related to reactor neutrino and solar neutrino flux predictions. We find that the maximal possible value of the Jarlskog invariant in the lepton sector is 0.033 ±0.010 (±0.027) at the 1σ (3σ) level and we use leptonic unitarity triangles to illustrate the ability of global oscillation data to obtain information on CP violation. We discuss “tendencies and tensions” of the global fit related to the octant of θ23 as well as the CP violating phase δCP. The favored values of δCP are around 3π/2 while values around π/2 are disfavored at about Δχ2 ≃6. We comment on the non-trivial task to assign a confidence level to this Δχ2 value by performing a Monte Carlo study of T2K data.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

References

  1. [1]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  8. [8]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, arXiv:1405.7540 [INSPIRE].
  12. [12]
    NuFIT webpage, http://www.nu-fit.org/.
  13. [13]
    R. Wendell, Atmospheric results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston U.S.A. June 2-7 2014.Google Scholar
  14. [14]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  15. [15]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T2K collaboration, K. Abe et al., Precise measurement of the neutrino mixing parameter θ 23 from muon neutrino disappearance in an off-axis beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Koshio, Solar results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston U.S.A. June 2-7 2014.Google Scholar
  26. [26]
    SNO collaboration, B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Borexino collaboration, G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8 B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New solar composition: the problem with solar models revisited, Astrophys. J. 705 (2009) L123 [arXiv:0909.2668] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Zhang, Recent results from Daya Bay, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston U.S.A. June 2-7 2014.Google Scholar
  34. [34]
    S.-H. Seo, New results from RENO, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston U.S.A. June 2-7 2014.Google Scholar
  35. [35]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+p\to n+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [Yad. Fiz. 52 (1990) 472] [Pisma Zh. Eksp. Teor. Fiz. 54 (1991) 259] [Sov. J. Nucl. Phys. 52 (1990) 300] [INSPIRE].
  38. [38]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  39. [39]
    G.S. Vidyakin et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [Zh. Eksp. Teor. Fiz. 93 (1987) 424] [INSPIRE].
  40. [40]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 364] [INSPIRE].
  41. [41]
    H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  42. [42]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino oscillation experiments at the Gosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].ADSGoogle Scholar
  43. [43]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  44. [44]
    A.I. Afonin et al., A study of the reaction \( {\overline{\nu}}_e+p\to {e}^{+}+n \) on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [Zh. Eksp. Teor. Fiz. 94N2 (1988) 1] [INSPIRE].
  45. [45]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  46. [46]
    T. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  48. [48]
    T. Schwetz, M. Tortola and J.W.F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.C. Gonzalez-Garcia and C. Pena-Garay, Three neutrino mixing after the first results from K2K and KamLAND, Phys. Rev. D 68 (2003) 093003 [hep-ph/0306001] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Y. Farzan and A.Y. Smirnov, Leptonic unitarity triangle and CP-violation, Phys. Rev. D 65 (2002) 113001 [hep-ph/0201105] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A.Y. Smirnov, Neutrino-2008: where are we? Where are we going?, J. Phys. Conf. Ser. 136 (2008) 012002 [arXiv:0810.2668] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Dueck, S. Petcov and W. Rodejohann, On leptonic unitary triangles and boomerangs, Phys. Rev. D 82 (2010) 013005 [arXiv:1006.0227] [INSPIRE].ADSGoogle Scholar
  55. [55]
    H.-J. He and X.-J. Xu, Connecting leptonic unitarity triangle to neutrino oscillation, Phys. Rev. D 89 (2014) 073002 [arXiv:1311.4496] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Goswami and A.Y. Smirnov, Solar neutrinos and 1-3 leptonic mixing, Phys. Rev. D 72 (2005) 053011 [hep-ph/0411359] [INSPIRE].ADSGoogle Scholar
  57. [57]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.P. Mikheev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  59. [59]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 >0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Neutrino masses and mixing: 2008 status, Nucl. Phys. Proc. Suppl. 188 (2009) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ 13, PoS(IDM2008)072 [arXiv:0812.3161] [INSPIRE].
  63. [63]
    A.B. Balantekin and D. Yilmaz, Contrasting solar and reactor neutrinos with a non-zero value of θ 13, J. Phys. G 35 (2008) 075007 [arXiv:0804.3345] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 >0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Palazzo, Hint of non-standard dynamics in solar neutrino conversion, Phys. Rev. D 83 (2011) 101701 [arXiv:1101.3875] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    P.C. de Holanda and A.Y. Smirnov, Solar neutrino spectrum, sterile neutrinos and additional radiation in the universe, Phys. Rev. D 83 (2011) 113011 [arXiv:1012.5627] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T.J.C. Bezerra, H. Furuta and F. Suekane, Measurement of effective Δm 312 using baseline differences of Daya Bay, RENO and Double CHOOZ reactor neutrino experiments, arXiv:1206.6017 [INSPIRE].
  69. [69]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
  71. [71]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].ADSGoogle Scholar
  72. [72]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    C.W. Kim and U.W. Lee, Comment on the possible electron neutrino excess in the Super-Kamiokande atmospheric neutrino experiment, Phys. Lett. B 444 (1998) 204 [hep-ph/9809491] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    O.L.G. Peres and A.Y. Smirnov, Testing the solar neutrino conversion with atmospheric neutrinos, Phys. Lett. B 456 (1999) 204 [hep-ph/9902312] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    O.L.G. Peres and A.Y. Smirnov, Atmospheric neutrinos: LMA oscillations, U e3 induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.C. Gonzalez-Garcia, M. Maltoni and A.Y. Smirnov, Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos, Phys. Rev. D 70 (2004) 093005 [hep-ph/0408170] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].CrossRefGoogle Scholar
  78. [78]
    T. Schwetz, What is the probability that θ 13 and CP-violation will be discovered in future neutrino oscillation experiments?, Phys. Lett. B 648 (2007) 54 [hep-ph/0612223] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Blennow, P. Coloma and E. Fernandez-Martinez, Reassessing the sensitivity to leptonic CP-violation, arXiv:1407.3274 [INSPIRE].
  80. [80]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • M. C. Gonzalez-Garcia
    • 1
    • 2
  • Michele Maltoni
    • 3
  • Thomas Schwetz
    • 4
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookU.S.A.
  3. 3.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  4. 4.Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden

Personalised recommendations