Advertisement

Journal of High Energy Physics

, 2014:43 | Cite as

Effects of color reconnection on \( t\overline{t} \) final states at the LHC

  • Spyros Argyropoulos
  • Torbjörn Sjöstrand
Open Access
Regular Article - Theoretical Physics

Abstract

The modeling of color reconnection has become one of the dominant sources of systematic uncertainty in the top mass determination at hadron colliders. The uncertainty on the top mass due to color reconnection is conventionally estimated by taking the difference in the predictions of a model with and a model without color reconnection. We show that this procedure underestimates the uncertainty when applied to the existing models in Pythia 8. We introduce two new classes of color reconnection models, each containing several variants, which encompass a variety of scenarios that could be realized in nature and we study how they affect the reconstruction of the top mass. After tuning the new models to existing LHC data, the remaining spread of predictions is used to derive a more realistic uncertainty for the top mass, which is found to be around 500 MeV. We also propose how future LHC measurements with \( t\overline{t} \) events can be used to further constrain these models and reduce the associated modeling uncertainty.

Keywords

QCD Phenomenology Monte Carlo Simulations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS, CDF, CMS and D0 Collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, ATLAS-CONF-2014-008.
  2. [2]
    CMS Collaboration, Measurement of the top-quark mass in t t-bar events with lepton+jets final states in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-TOP-14-001.
  3. [3]
    D0 collaboration, V.M. Abazov et al., Precision measurement of the top-quark mass in lepton+jets final states, Phys. Rev. Lett. 113 (2014) 032002 [arXiv:1405.1756] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CDF Collaboration, D0 collaboration, T.E.W. Group, Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb −1 at the Tevatron, arXiv:1407.2682 [INSPIRE].
  5. [5]
    A. Juste, S. Mantry, A. Mitov, A. Penin, P. Skands et al., Determination of the top quark mass circa 2013: methods, subtleties, perspectives, arXiv:1310.0799 [INSPIRE].
  6. [6]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS Collaboration, Study of the underlying event, b-quark fragmentation and hadronization properties in tbart events, CMS-PAS-TOP-13-007.
  10. [10]
    T. Sjöstrand, Colour reconnection and its effects on precise measurements at the LHC, arXiv:1310.8073 [INSPIRE].
  11. [11]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  12. [12]
    UA1 collaboration, C. Albajar et al., A Study of the General Characteristics of \( p\overline{p} \) Collisions at \( \sqrt{s}=0.2 \) -TeV to 0.9-TeV, Nucl. Phys. B 335 (1990) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Buttar, S. Dittmaier, V. Drollinger, S. Frixione, A. Nikitenko et al., Les Houches physics at TeV colliders 2005, standard model and Higgs working group: Summary report, hep-ph/0604120 [INSPIRE].
  15. [15]
    P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Rathsman, A Generalized area law for hadronic string re-interactions, Phys. Lett. B 452 (1999) 364 [hep-ph/9812423] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Edin, G. Ingelman and J. Rathsman, Soft color interactions as the origin of rapidity gaps in DIS, Phys. Lett. B 366 (1996) 371 [hep-ph/9508386] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V.A. Khoze, F. Krauss, A.D. Martin, M.G. Ryskin and K.C. Zapp, Diffraction and correlations at the LHC: Definitions and observables, Eur. Phys. J. C 69 (2010) 85 [arXiv:1005.4839] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Sjöstrand and V.A. Khoze, On Color rearrangement in hadronic W+ W- events, Z. Phys. C 62 (1994) 281 [hep-ph/9310242] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Andersson, G. Gustafson and B. Soderberg, A Probability Measure on Parton and String States, Nucl. Phys. B 264 (1986) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V.A. Khoze and T. Sjöstrand, Color correlations and multiplicities in top events, Phys. Lett. B 328 (1994) 466 [hep-ph/9403394] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. Andersson, G. Gustafson and T. Sjöstrand, How to Find the Gluon Jets in e + e Annihilation, Phys. Lett. B 94 (1980) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    JADE collaboration, W. Bartel et al., Comparison of Three Jet Events With QCD Shower Models, Phys. Lett. B 157 (1985) 340 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    ALEPH collaboration, A Study of the string effect in Z3 Jets, contributed paper 0518 to the International Europhysics Conference on High-energy Physics, Brussels, 1995.Google Scholar
  31. [31]
    ATLAS collaboration, Measurement of jet shapes in top-quark pair events at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2676 [arXiv:1307.5749] [INSPIRE].ADSGoogle Scholar
  32. [32]
    ATLAS collaboration, Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033 [arXiv:1012.5104] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    CMS collaboration, Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2080 [arXiv:1204.1411] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS collaboration, Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 74 (2014) 2965 [arXiv:1406.0392] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Frixione and A. Mitov, Determination of the top quark mass from leptonic observables, JHEP 09 (2014) 012 [arXiv:1407.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.R. Christiansen, P. Skands, to appear.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  2. 2.Deutsches Elektronen SynchrotronHamburgGermany

Personalised recommendations