Journal of High Energy Physics

, 2014:42 | Cite as

Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector

Open Access
Regular Article - Theoretical Physics

Abstract

In this letter we point out the possibility to study new physics in the neutrino sector using dark matter detectors based on liquid xenon. These are characterized by very good spatial resolution and extremely low thresholds for electron recoil energies. When combined with a radioactive νe source, both features in combination allow for a very competitive sensitivity to neutrino magnetic moments and sterile neutrino oscillations. We find that, for realistic values of detector size and source strength, the bound on the neutrino magnetic moment can be improved by an order of magnitude with respect to the present value. Regarding sterile neutrino searches, we find that most of the gallium anomaly could be explored at the 95% confidence level just using shape information.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    D. Bauer et al., Dark matter in the coming decade: complementary paths to discovery and beyond, arXiv:1305.1605 [INSPIRE].
  2. [2]
    M. Pospelov, Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents, Phys. Rev. D 84 (2011) 085008 [arXiv:1103.3261] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Pospelov and J. Pradler, Elastic scattering signals of solar neutrinos with enhanced baryonic currents, Phys. Rev. D 85 (2012) 113016 [arXiv:1203.0545] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Pospelov and J. Pradler, Dark matter or neutrino recoil? Interpretation of recent experimental results, Phys. Rev. D 89 (2014) 055012 [arXiv:1311.5764] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].ADSGoogle Scholar
  7. [7]
    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  8. [8]
    M. Cribier et al., Production of a 62 PBq 51 Cr low-energy neutrino source for GALLEX, Nucl. Instrum. Meth. A 378 (1996) 233 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    GALLEX collaboration, P. Anselmann et al., First results from the 51 Cr neutrino source experiment with the GALLEX detector, Phys. Lett. B 342 (1995) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    GALLEX collaboration, W. Hampel et al., Final results of the 51 Cr neutrino source experiments in GALLEX, Phys. Lett. B 420 (1998) 114 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the response of the Russian-American gallium experiment to neutrinos from a 51 Cr source, Phys. Rev. C 59 (1999) 2246 [hep-ph/9803418] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ZEPLIN-III collaboration, V.N. Lebedenko et al., Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment, Phys. Rev. Lett. 103 (2009) 151302 [arXiv:0901.4348] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    XENON100 collaboration, E. Aprile et al., The XENON100 dark matter experiment, Astropart. Phys. 35 (2012) 573 [arXiv:1107.2155] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    LUX collaboration, D.S. Akerib et al., The Large Underground Xenon (LUX) experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  16. [16]
    DARWIN Consortium collaboration, L. Baudis, DARWIN: dark matter WIMP search with noble liquids, J. Phys. Conf. Ser. 375 (2012) 012028 [arXiv:1201.2402] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  18. [18]
    G.G. Raffelt, Limits on neutrino electromagnetic properties: an update, Phys. Rept. 320 (1999) 319 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Beda et al., The results of search for the neutrino magnetic moment in GEMMA experiment, Adv. High Energy Phys. 2012 (2012) 350150.ADSCrossRefGoogle Scholar
  20. [20]
    C. Broggini, C. Giunti and A. Studenikin, Electromagnetic properties of neutrinos, Adv. High Energy Phys. 2012 (2012) 459526 [arXiv:1207.3980] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    Borexino collaboration, G. Bellini et al., SOX: Short distance neutrino Oscillations with BoreXino, JHEP 08 (2013) 038 [arXiv:1304.7721] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    LZ collaboration, private communication.Google Scholar
  23. [23]
    L. Baudis et al., Neutrino physics with multi-ton scale liquid xenon detectors, JCAP 01 (2014) 044 [arXiv:1309.7024] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    EXO-200 collaboration, J.B. Albert et al., Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector, Phys. Rev. C 89 (2014) 015502 [arXiv:1306.6106] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Bellotti et al., Measurement of the gamma activity induced by neutron activation in the GALLEX neutrino source, Nucl. Instrum. Meth. B 100 (1995) 199.ADSCrossRefGoogle Scholar
  26. [26]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Giunti and M. Laveder, Status of 3+1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M.A. Acero, C. Giunti and M. Laveder, Limits on ν e and \( {\overline{\nu}}_e \) disappearance from gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Pilar Coloma
    • 1
  • Patrick Huber
    • 1
  • Jonathan M. Link
    • 1
  1. 1.Center for Neutrino Physics, Physics DepartmentVirginia TechBlacksburgU.S.A.

Personalised recommendations