Advertisement

Journal of High Energy Physics

, 2014:41 | Cite as

Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions

  • Fabrizio Caola
  • Johannes M. Henn
  • Kirill Melnikov
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
Open Access
Regular Article - Theoretical Physics

Abstract

Knowledge of two-loop QCD amplitudes for processes \( qq^{\prime}\to {V}_1{V}_2\to \left({l}_1{\overline{l}}_1^{\prime}\right)\left({l}_2{\overline{l}}_2^{\prime}\right) \) is important for improving the theoretical description of four-lepton production in hadron collisions. In this paper we compute these helicity amplitudes for all intermediate vector bosons, V 1 V 2 = γ * γ *, W + W , ZZ, W ± Z, W ± γ *, including off-shell effects and decays to leptons.

Keywords

NLO Computations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Measurement of WW production rate, CMS-PAS-SMP-12-005 (2012).
  3. [3]
    CMS collaboration, Measurement of WW production rate, CMS-PAS-SMP-12-013 (2012).
  4. [4]
    D. Curtin, P. Meade and P.-J. Tien, Natural SUSY in Plain Sight, arXiv:1406.0848 [INSPIRE].
  5. [5]
    D. Curtin, P. Jaiswal and P. Meade, Charginos Hiding In Plain Sight, Phys. Rev. D 87 (2013) 031701 [arXiv:1206.6888] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Meade, H. Ramani and M. Zeng, Transverse momentum resummation effects in W + W measurements, arXiv:1407.4481 [INSPIRE].
  7. [7]
    CMS collaboration, Measurement of the pp to ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at \( \sqrt{s}=8 \) TeV, arXiv:1406.0113 [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the Wγ and Zγ inclusive cross sections in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89 (2014) 092005.ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, Measurement of Wγ and Zγ production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys. Lett. B 717 (2012) 49 [arXiv:1205.2531] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Jaiswal and T. Okui, Explanation of the WW excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Ohnemus and J.F. Owens, An Order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Ohnemus, An Order α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Ohnemus, An Order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  14. [14]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Frixione, P. Nason and G. Ridolfi, Strong corrections to W Z production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Frixione, A Next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton +0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Grazzini, Soft-gluon effects in WW production at hadron colliders, JHEP 01 (2006) 095 [hep-ph/0510337] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Wang, C.S. Li, Z.L. Liu, D.Y. Shao and H.T. Li, Transverse-Momentum Resummation for Gauge Boson Pair Production at the Hadron Collider, Phys. Rev. D 88 (2013) 114017 [arXiv:1307.7520] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Kao and D.A. Dicus, Production of W + W from gluon fusion, Phys. Rev. D 43 (1991) 1555 [INSPIRE].ADSGoogle Scholar
  37. [37]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Anastasiou et al., NNLO QCD corrections to ppγ * γ * in the large-N F limit, arXiv:1408.4546 [INSPIRE].
  42. [42]
    T. Gehrmann et al., W + W production at hadron colliders in NNLO QCD, arXiv:1408.5243 [INSPIRE].
  43. [43]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Somogyi, P. Bolzoni and Z. Trócsányi, NNLO jet cross sections by subtraction, Nucl. Phys. Proc. Suppl. 205-206 (2010) 42 [arXiv:1007.4067] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, arXiv:1408.2500 [INSPIRE].
  51. [51]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {Z}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for g gZ g and g gZ γ, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    G. Chachamis, M. Czakon and D. Eiras, W Pair Production at the LHC. I. Two-loop Corrections in the High Energy Limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to VV \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R.J. Gonsalves, Dimensionally regularized two loop on-shell quark form-factor, Phys. Rev. D 28 (1983) 1542 [INSPIRE].ADSGoogle Scholar
  60. [60]
    W.L. van Neerven, Dimensional Regularization of Mass and Infrared Singularities in Two Loop On-shell Vertex Functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Kramer and B. Lampe, Integrals for Two Loop Calculations in Massless QCD, J. Math. Phys. 28 (1987) 945 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, arXiv:1408.2372 [INSPIRE].
  70. [70]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language, J. Symb. Comput. 33 (2002) 1.CrossRefzbMATHMathSciNetGoogle Scholar
  71. [71]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Fabrizio Caola
    • 1
  • Johannes M. Henn
    • 2
  • Kirill Melnikov
    • 1
  • Alexander V. Smirnov
    • 3
  • Vladimir A. Smirnov
    • 4
  1. 1.Institute for Theoretical Particle PhysicsKITKarlsruheGermany
  2. 2.Institute for Advanced StudyPrincetonU.S.A.
  3. 3.Scientific Research Computing CenterMoscow State UniversityMoscowRussia
  4. 4.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations