Advertisement

Journal of High Energy Physics

, 2014:27 | Cite as

Non-existence of supersymmetric AdS 5 black rings

  • J. Grover
  • J. Gutowski
  • W. A. Sabra
Open Access
Article

Abstract

It has been proven in arXiv:1303.0853 that all regular supersymmetric near-horizon geometries in minimal five-dimensional gauged supergravity admit automatic supersymmetry enhancement. Using this result, the integrability conditions associated with the existence of the additional supersymmetry are analysed, and the near-horizon geometries are determined explicitly. We show that they all correspond to previously constructed examples. Hence, there are no supersymmetric black ring solutions in minimal five-dimensional gauged supergravity.

Keywords

Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Emparan and H.S. Reall, A Rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A Supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A.H. Chamseddine and W.A. Sabra, Magnetic strings in five-dimensional gauged supergravity theories, Phys. Lett. B 477 (2000) 329 [hep-th/9911195] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  12. [12]
    J.B. Gutowski and W. Sabra, General supersymmetric solutions of five-dimensional supergravity, JHEP 10 (2005) 039 [hep-th/0505185] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    S.L. Cacciatori, D. Klemm and W.A. Sabra, Supersymmetric domain walls and strings in D = 5 gauged supergravity coupled to vector multiplets, JHEP 03 (2003) 023 [hep-th/0302218] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Behrndt, A.H. Chamseddine and W.A. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Klemm and W.A. Sabra, Charged rotating black holes in 5 − D Einstein-Maxwell (A)dS gravity, Phys. Lett. B 503 (2001) 147 [hep-th/0010200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Klemm and W.A. Sabra, General (anti-)de Sitter black holes in five-dimensions, JHEP 02 (2001) 031 [hep-th/0011016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Grover, J.B. Gutowski and W. Sabra, Vanishing preons in the fifth dimension, Class. Quant. Grav. 24 (2007) 417 [hep-th/0608187] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    J.M. Figueroa-O’Farrill, J. Gutowski and W. Sabra, The Return of the four- and five-dimensional preons, Class. Quant. Grav. 24 (2007) 4429 [arXiv:0705.2778] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    J.B. Gutowski and W.A. Sabra, Half-Supersymmetric Solutions in Five-Dimensional Supergravity, JHEP 12 (2007) 025 [Erratum ibid. 1004 (2010) 042] [arXiv:0706.3147] [INSPIRE].
  20. [20]
    J. Grover, J.B. Gutowski and W. Sabra, Null Half-Supersymmetric Solutions in Five-Dimensional Supergravity, JHEP 10 (2008) 103 [arXiv:0802.0231] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Gillard, U. Gran and G. Papadopoulos, The Spinorial geometry of supersymmetric backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    U. Gran, J. Gutowski and G. Papadopoulos, The Spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 22 (2005) 2453 [hep-th/0501177] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    U. Gran, P. Lohrmann and G. Papadopoulos, The Spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.B. Gutowski and W.A. Sabra, Enhanced Horizons, Class. Quant. Grav. 27 (2010) 235011 [arXiv:0807.4714] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Grover, J.B. Gutowski, G. Papadopoulos and W.A. Sabra, Index Theory and Supersymmetry of 5D Horizons, JHEP 06 (2014) 020 [arXiv:1303.0853] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric anti-de Sitter black rings exist?, JHEP 02 (2007) 026 [hep-th/0611351] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    J. Grover and J. Gutowski, Horizons in de-Sitter Supergravity, JHEP 04 (2010) 009 [arXiv:1001.2460] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    H.K. Kunduri and J. Lucietti, Near-horizon geometries of supersymmetric AdS 5 black holes, JHEP 12 (2007) 015 [arXiv:0708.3695] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physics Department University of Aveiro and I3NAveiroPortugal
  2. 2.Department of Mathematics University of SurreyGuildfordU.K.
  3. 3.Centre for Advanced Mathematical Sciences and Physics DepartmentAmerican University of BeirutBeirutLebanon

Personalised recommendations