Journal of High Energy Physics

, 2013:211 | Cite as

Light sterile neutrinos in cosmology and short-baseline oscillation experiments



We analyze the most recent cosmological data, including Planck, taking into account the possible existence of a sterile neutrino with a mass at the eV scale indicated by short-baseline neutrino oscillations data in the 3+1 framework. We show that the contribution of local measurements of the Hubble constant induces an increase of the value of the effective number of relativistic degrees of freedom above the Standard Model value, giving an indication in favor of the existence of sterile neutrinos and their contribution to dark radiation. Furthermore, the measurements of the local galaxy cluster mass distribution favor the existence of sterile neutrinos with eV-scale masses, in agreement with short-baseline neutrino oscillations data. In this case there is no tension between cosmological and short-baseline neutrino oscillations data, but the contribution of the sterile neutrino to the effective number of relativistic degrees of freedom is likely to be smaller than one. Considering the Dodelson-Widrow and thermal models for the statistical cosmological distribution of sterile neutrinos, we found that in the Dodelson-Widrow model there is a slightly better compatibility between cosmological and short-baseline neutrino oscillations data and the required suppression of the production of sterile neutrinos in the early Universe is slightly smaller.


Cosmology of Theories beyond the SM Neutrino Physics 


  1. [1]
    Planck collaboration, P. Ade et al., Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [INSPIRE].
  2. [2]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  3. [3]
    T.D. Jacques, L.M. Krauss and C. Lunardini, Additional Light Sterile Neutrinos and Cosmology, Phys. Rev. D 87 (2013) 083515 [arXiv:1301.3119] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Di Bari, S.F. King and A. Merle, Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Phys. Lett. B 724 (2013) 77 [arXiv:1303.6267] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Kelso, S. Profumo and F.S. Queiroz, Nonthermal WIMPs asDark Radiationin Light of ATACAMA, SPT, WMAP9 and Planck, Phys. Rev. D 88 (2013) 023511 [arXiv:1304.5243] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Di Valentino, A. Melchiorri and O. Mena, Dark radiation sterile neutrino candidates after Planck data, JCAP 11 (2013) 018 [arXiv:1304.5981] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    N. Said, E. Di Valentino and M. Gerbino, Dark Radiation after Planck, Phys. Rev. D 88 (2013) 023513 [arXiv:1304.6217] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Weinberg, Goldstone Bosons as Fractional Cosmic Neutrinos, Phys. Rev. Lett. 110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Verde, P. Protopapas and R. Jimenez, Planck and the local Universe: quantifying the tension, arXiv:1306.6766 [INSPIRE].
  11. [11]
    L. Verde, S.M. Feeney, D.J. Mortlock and H.V. Peiris, (Lack of) Cosmological evidence for dark radiation after Planck, JCAP 09 (2013) 013 [arXiv:1307.2904] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Wyman, D.H. Rudd, R.A. Vanderveld and W. Hu, nu-LCDM: Neutrinos reconcile Planck with the Local Universe, arXiv:1307.7715 [INSPIRE].
  13. [13]
    J. Hamann and J. Hasenkamp, A new life for sterile neutrinos: resolving inconsistencies using hot dark matter, JCAP 10 (2013) 044 [arXiv:1308.3255] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.A. Battye and A. Moss, Evidence for massive neutrinos from CMB and lensing observations, arXiv:1308.5870 [INSPIRE].
  15. [15]
    C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, Oxford, U.K., (2007) [ISBN: 978-0-19-850871-7].Google Scholar
  16. [16]
    J. Lesgourgues and S. Pastor, Neutrino mass from Cosmology, Adv. High Energy Phys. 2012 (2012) 608515 [arXiv:1212.6154] [INSPIRE].Google Scholar
  17. [17]
    J. Lesgourgues, G. Mangano, G. Miele and S. Pastor, Neutrino Cosmology, Cambridge University Press, (2013) [ISBN: 9781139012874].Google Scholar
  18. [18]
    G. Mangano, G. Miele, S. Pastor and M. Peloso, A precision calculation of the effective number of cosmological neutrinos, Phys. Lett. B 534 (2002) 8 [astro-ph/0111408] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
  22. [22]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Conrad, C. Ignarra, G. Karagiorgi, M. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].Google Scholar
  27. [27]
    C. Giunti, M. Laveder, Y. Li, Q. Liu and H. Long, Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Giunti, M. Laveder, Y. Li and H. Long, Short-Baseline Electron Neutrino Oscillation Length After Troitsk, Phys. Rev. D 87 (2013) 013004 [arXiv:1212.3805] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Giunti, M. Laveder, Y. Li and H. Long, Pragmatic View of Short-Baseline Neutrino Oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Phys. Rev. D 87 (2013) 083008 [arXiv:1104.2333] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Archidiacono, E. Giusarma, S. Hannestad and O. Mena, Cosmic dark radiation and neutrinos, arXiv:1307.0637 [INSPIRE].
  33. [33]
    M.A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev. D 79 (2009) 045026 [arXiv:0812.2249] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Mirizzi et al., The strongest bounds on active-sterile neutrino mixing after Planck data, Phys. Lett. B 726 (2013) 8 [arXiv:1303.5368] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Hannestad, I. Tamborra and T. Tram, Thermalisation of light sterile neutrinos in the early universe, JCAP 07 (2012) 025 [arXiv:1204.5861] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Mirizzi, N. Saviano, G. Miele and P.D. Serpico, Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Phys. Rev. D 86 (2012) 053009 [arXiv:1206.1046] [INSPIRE].ADSGoogle Scholar
  38. [38]
    N. Saviano et al., Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev. D 87 (2013) 073006 [arXiv:1302.1200] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Hannestad, R.S. Hansen and T. Tram, Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, JCAP 04 (2013) 032 [arXiv:1302.7279] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments, arXiv:1302.6720 [INSPIRE].
  42. [42]
    J.R. Kristiansen, O. Elgaroy, C. Giunti and M. Laveder, Cosmology with sterile neutrino masses from oscillation experiments, arXiv:1303.4654 [INSPIRE].
  43. [43]
    A.G. Riess et al., A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011) 129] [arXiv:1103.2976] [INSPIRE].
  44. [44]
    S. Suyu et al., Two accurate time-delay distances from strong lensing: Implications for cosmology, Astrophys. J. 766 (2013) 70 [arXiv:1208.6010] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Planck collaboration, P. Ade et al., Planck 2013 results. XV. CMB power spectra and likelihood, arXiv:1303.5075 [INSPIRE].
  48. [48]
    WMAP collaboration, C. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Das et al., The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data, arXiv:1301.1037 [INSPIRE].
  50. [50]
    R. Keisler et al., A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Reichardt et al., A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations, Astrophys. J. 755 (2012) 70 [arXiv:1111.0932] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Dunkley et al., The Atacama Cosmology Telescope: likelihood for small-scale CMB data, arXiv:1301.0776 [INSPIRE].
  53. [53]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    B.A. Bassett and R. Hlozek, Baryon Acoustic Oscillations, arXiv:0910.5224 [INSPIRE].
  55. [55]
    SDSS collaboration, K.N. Abazajian et al., The Seventh Data Release of the Sloan Digital Sky Survey, Astrophys. J. Suppl. 182 (2009) 543 [arXiv:0812.0649] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    SDSS collaboration, W.J. Percival et al., Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    N. Padmanabhan et al., A 2 per cent distance to z=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 2132 [arXiv:1202.0090] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    SDSS collaboration, C.P. Ahn et al., The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Astrophys. J. Suppl. 203 (2012) 21 [arXiv:1207.7137] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample, Mon. Not. Roy. Astron. Soc. 427 (2013) 3435 [arXiv:1203.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D.H. Jones et al., The 6dF Galaxy Survey: Final Redshift Release (DR3) and Southern Large-Scale Structures, arXiv:0903.5451 [INSPIRE].
  62. [62]
    A. Vikhlinin et al., Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints, Astrophys. J. 692 (2009) 1060 [arXiv:0812.2720] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R. Burenin and A. Vikhlinin, Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data, arXiv:1202.2889 [INSPIRE].
  64. [64]
    W.L. Freedman et al., Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, Astrophys. J. 758 (2012) 24 [arXiv:1208.3281] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
  66. [66]
    E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev. D 85 (2012) 083522 [arXiv:1112.4661] [INSPIRE].ADSGoogle Scholar
  67. [67]
    H. Motohashi, A.A. Starobinsky and J. Yokoyama, Cosmology based on f(R) Gravity admits 1eV Sterile Neutrinos, Phys. Rev. Lett. 110 (2013) 121302 [arXiv:1203.6828] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C.M. Ho and R.J. Scherrer, Sterile Neutrinos and Light Dark Matter Save Each Other, Phys. Rev. D 87 (2013) 065016 [arXiv:1212.1689] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Cribier et al., A proposed search for a fourth neutrino with a PBq antineutrino source, Phys. Rev. Lett. 107 (2011) 201801 [arXiv:1107.2335] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Bungau et al., Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8 Li Production and Decay, Phys. Rev. Lett. 109 (2012) 141802 [arXiv:1205.4419] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C. Rubbia, A. Guglielmi, F. Pietropaolo and P. Sala, Sterile neutrinos: the necessity for a 5 sigma definitive clarification, arXiv:1304.2047 [INSPIRE].
  72. [72]
    Borexino collaboration, G. Bellini et al., SOX: Short distance neutrino Oscillations with BoreXino, JHEP 08 (2013) 038 [arXiv:1304.7721] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    OscSNS collaboration, M. Elnimr et al., The OscSNS White Paper, arXiv:1307.7097 [INSPIRE].
  74. [74]
    X. Qian, C. Zhang, M. Diwan and P. Vogel, Unitarity Tests of the Neutrino Mixing Matrix, arXiv:1308.5700 [INSPIRE].
  75. [75]
    nuSTORM collaboration, D. Adey et al., nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC, arXiv:1308.6822 [INSPIRE].
  76. [76]
    W. Hu and B. Jain, Joint galaxy-lensing observables and the dark energy, Phys. Rev. D 70 (2004) 043009 [astro-ph/0312395] [INSPIRE].ADSGoogle Scholar
  77. [77]
    W. Hu, Dark energy probes in light of the CMB, ASP Conf. Ser. 339 (2005) 215 [astro-ph/0407158] [INSPIRE].ADSGoogle Scholar
  78. [78]
    R. Burenin, Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations, Astron. Lett. 39 (2013) 357 [arXiv:1301.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  80. [80]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  81. [81]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    A. Sejersen Riis, S. Hannestad and C. Weinheimer, Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference, Phys. Rev. C 84 (2011) 045503 [arXiv:1105.6005] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J. Formaggio and J. Barrett, Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, Phys. Lett. B 706 (2011) 68 [arXiv:1105.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Esmaili and O.L. Peres, KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Phys. Rev. D 85 (2012) 117301 [arXiv:1203.2632] [INSPIRE].ADSGoogle Scholar
  86. [86]
    J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    Y. Li and S.-s. Liu, Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Phys. Lett. B 706 (2012) 406 [arXiv:1110.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    C. Giunti and M. Laveder, Implications of 3+1 Short-Baseline Neutrino Oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    I. Girardi, A. Meroni and S. Petcov, Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos, arXiv:1308.5802 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Torino, and INFN, Sezione di TorinoTorinoItaly
  2. 2.INFN, Sezione di Torino, and Department of PhysicsUniversity of TorinoTorinoItaly
  3. 3.Dipartimento di Fisica e Astronomia “G. Galilei”Università di Padova, and INFN, Sezione di PadovaPadovaItaly

Personalised recommendations