Journal of High Energy Physics

, 2013:201 | Cite as

Vector fields in holographic cosmology

Article

Abstract

We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.B. Hartle and S. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J.B. Hartle, S. Hawking and T. Hertog, The Classical Universes of the No-Boundary Quantum State, Phys. Rev. D 77 (2008) 123537 [arXiv:0803.1663] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    J.B. Hartle, S. Hawking and T. Hertog, No-Boundary Measure of the Universe, Phys. Rev. Lett. 100 (2008) 201301 [arXiv:0711.4630] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.B. Hartle, S. Hawking and T. Hertog, Local Observation in Eternal inflation, Phys. Rev. Lett. 106 (2011) 141302 [arXiv:1009.2525] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Hertog, Predicting a Prior for Planck, arXiv:1305.6135 [INSPIRE].
  6. [6]
    T. Hertog and J.B. Hartle, Holographic No-Boundary Measure, JHEP 05 (2012) 095 [arXiv:1111.6090] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Balasubramanian, J. de Boer and D. Minic, Notes on de Sitter space and holography, Class. Quant. Grav. 19 (2002) 5655 [hep-th/0207245] [INSPIRE].CrossRefMATHGoogle Scholar
  8. [8]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  11. [11]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  12. [12]
    D. Anninos, F. Denef and D. Harlow, The Wave Function of Vasilievs UniverseA Few Slices Thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Castro and A. Maloney, The Wave Function of Quantum de Sitter, JHEP 11 (2012) 096 [arXiv:1209.5757] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, arXiv:1305.6321 [INSPIRE].
  15. [15]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  16. [16]
    G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Vilenkin, Quantum Cosmology and the Initial State of the Universe, Phys. Rev. D 37 (1988) 888 [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J.B. Hartle, S. Hawking and T. Hertog, Accelerated Expansion from Negative Λ, arXiv:1205.3807 [INSPIRE].
  19. [19]
    J.B. Hartle, S. Hawking and T. Hertog, Inflation with Negative Λ, arXiv:1207.6653 [INSPIRE].
  20. [20]
    J. Louko, Quantum Cosmology With Electromagnetism, Phys. Rev. D 38 (1988) 478 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Bergshoeff, J. Hartong, A. Ploegh, J. Rosseel and D. Van den Bleeken, Pseudo-supersymmetry and a tale of alternate realities, JHEP 07 (2007) 067 [arXiv:0704.3559] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence in AdS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.T. Mithani and A. Vilenkin, Inflation with negative potentials and the signature reversal symmetry, JCAP 04 (2013) 024 [arXiv:1302.0568] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.DAMTP, CMSUniversity of CambridgeCambridgeU.K.
  3. 3.Institute for Theoretical Physics, KU LeuvenLeuvenBelgium

Personalised recommendations