Journal of High Energy Physics

, 2013:193 | Cite as

Constraining light dark matter with diffuse X-ray and gamma-ray observations

  • Rouven Essig
  • Eric Kuflik
  • Samuel D. McDermott
  • Tomer Volansky
  • Kathryn M. Zurek
Open Access
Article

Abstract

We present constraints on decaying and annihilating dark matter (DM) in the 4 keV to 10 GeV mass range, using published results from the satellites HEAO-1, INTEGRAL, COMPTEL, EGRET, and the Fermi Gamma-ray Space Telescope. We derive analytic expressions for the gamma-ray spectra from various DM decay modes, and find lifetime constraints in the range 1024 − 1028 sec, depending on the DM mass and decay mode. We map these constraints onto the parameter space for a variety of models, including a hidden photino that is part of a kinetically mixed hidden sector, a gravitino with R-parity violating decays, a sterile neutrino, DM with a dipole moment, and a dark pion. The indirect constraints on sterile-neutrino and hidden-photino DM are found to be more powerful than other experimental or astrophysical probes in some parts of parameter space. While our focus is on decaying DM, we also present constraints on DM annihilation to electron-positron pairs. We find that if the annihilation is p-wave suppressed, the galactic diffuse constraints are, depending on the DM mass and velocity at recombination, more powerful than the constraints from the Cosmic Microwave Background.

Keywords

Cosmology of Theories beyond the SM Supersymmetric Effective Theories Supersymmetry Breaking 

References

  1. [1]
    C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett. 92 (2004) 101301 [astro-ph/0309686] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Boehm, P. Fayet and J. Silk, Light and heavy dark matter particles, Phys. Rev. D 69 (2004)101302 [hep-ph/0311143] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008)53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Hooper and K.M. Zurek, A natural supersymmetric model with mev dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009)115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, arXiv:1004.0691 [INSPIRE].
  8. [8]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+ecolliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F.J. Petriello, S. Quackenbush and K.M. Zurek, The invisible Z at the CERN LHC, Phys. Rev. D 77 (2008) 115020 [arXiv:0803.4005] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Y. Gershtein, F. Petriello, S. Quackenbush and K.M. Zurek, Discovering hidden sectors with mono-photon Z o searches, Phys. Rev. D 78 (2008) 095002 [arXiv:0809.2849] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011)014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Essig, J. Mardon, M. Papucci, T. Volansky, Y. Zhong, Constraining light dark matter with low-energy e + e colliders, to appear.Google Scholar
  16. [16]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].ADSGoogle Scholar
  21. [21]
    MiniBooNE collaboration, R. Dharmapalan et al., Low mass WIMP searches with a neutrino experiment: a proposal for further MiniBOONE running, arXiv:1211.2258 [INSPIRE].
  22. [22]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, arXiv:1307.6554 [INSPIRE].
  23. [23]
    M.D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, arXiv:1307.6861 [INSPIRE].
  24. [24]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on Dark Matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB constraints on WIMP annihilation: energy absorption during the recombination epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D.P. Finkbeiner, S. Galli, T. Lin and T.R. Slatyer, Searching for dark matter in the CMB: a compact parameterization of energy injection from new physics, Phys. Rev. D 85 (2012) 043522 [arXiv:1109.6322] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, Updated CMB constraints on dark matter annihilation cross-sections, Phys. Rev. D 84 (2011) 027302 [arXiv:1106.1528] [INSPIRE].ADSGoogle Scholar
  28. [28]
    LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].ADSGoogle Scholar
  29. [29]
    LAT collaboration, M. Ackermann et al., Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.A. Gomez-Vargas et al., Constraints on WIMP annihilation for contracted dark matter in the inner galaxy with the Fermi-LAT, arXiv:1308.3515 [INSPIRE].
  31. [31]
    M. Papucci and A. Strumia, Robust implications on dark matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Cirelli, P. Panci and P.D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl. Phys. B 840 (2010) 284 [arXiv:0912.0663] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.D. Kribs and I. Rothstein, Bounds on longlived relics from diffuse gamma-ray observations, Phys. Rev. D 55 (1997) 4435 [Erratum ibid. D 56 (1997) 1822] [hep-ph/9610468] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H. Yuksel and M.D. Kistler, Circumscribing late dark matter decays model independently, Phys. Rev. D 78 (2008) 023502 [arXiv:0711.2906] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.A. Cembranos and L.E. Strigari, Diffuse MeV gamma-rays and galactic 511 keV line from decaying WIMP dark matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Boyarsky and O. Ruchayskiy, Bounds on Light Dark Matter, arXiv:0811.2385 [INSPIRE].
  37. [37]
    G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-rays from decaying dark matter, JCAP 11 (2007) 003 [arXiv:0709.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Boyarsky, J. Nevalainen and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Astron. Astrophys. 471 (2007) 51 [astro-ph/0610961] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Boyarsky, J.W. den Herder, A. Neronov and O. Ruchayskiy, Search for the light dark matter with an X-ray spectrometer, Astropart. Phys. 28 (2007) 303 [astro-ph/0612219] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Boyarsky, D. Malyshev, A. Neronov and O. Ruchayskiy, Constraining DM properties with SPI, Mon. Not. Roy. Astron. Soc. 387 (2008) 1345 [arXiv:0710.4922] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Gomez-Vargas et al., CLUES on Fermi-LAT prospects for the extragalactic detection of munuSSM gravitino Dark Matter, JCAP 02 (2012) 001 [arXiv:1110.3305] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Stecker and A. Tylka, Spectra, fluxes and observability of gamma-rays from dark matter annihilation in the galaxy, Astrophys. J. 343 (1989) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Stecker, The cosmic gamma-ray background from the annihilation of primordial stable neutral heavy leptons, Astrophys. J. 223 (1978) 1032 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.R. Pullen, R.-R. Chary and M. Kamionkowski, Search with EGRET for a gamma ray line from the galactic center, Phys. Rev. D 76 (2007) 063006 [Erratum ibid. D 83 (2011) 029904] [astro-ph/0610295] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Masso and R. Toldra, Photon spectrum produced by the late decay of a cosmic neutrino background, Phys. Rev. D 60 (1999) 083503 [astro-ph/9903397] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Abazajian, G.M. Fuller and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J. 562 (2001) 593 [astro-ph/0106002] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213 [astro-ph/0512509] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Kusenko, Sterile neutrinos: The Dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Palazzo, D. Cumberbatch, A. Slosar and J. Silk, Sterile neutrinos as subdominant warm dark matter, Phys. Rev. D 76 (2007) 103511 [arXiv:0707.1495] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74 (2006) 103506 [astro-ph/0603368] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Riemer-Sorensen, S.H. Hansen and K. Pedersen, Sterile neutrinos in the Milky Way: observational constraints, Astrophys. J. 644 (2006) L33 [astro-ph/0603661] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C.R. Watson, J.F. Beacom, H. Yuksel and T.P. Walker, Direct X-ray constraints on sterile neutrino warm dark matter, Phys. Rev. D 74 (2006) 033009 [astro-ph/0605424] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K.N. Abazajian, M. Markevitch, S.M. Koushiappas and R.C. Hickox, Limits on the radiative decay of sterile neutrino dark matter from the unresolved cosmic and soft X-ray backgrounds, Phys. Rev. D 75 (2007) 063511 [astro-ph/0611144] [INSPIRE].ADSGoogle Scholar
  54. [54]
    H. Yuksel, J.F. Beacom and C.R. Watson, Strong upper limits on sterile neutrino warm dark matter, Phys. Rev. Lett. 101 (2008) 121301 [arXiv:0706.4084] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov and I. Tkachev, Where to find a dark matter sterile neutrino?, Phys. Rev. Lett. 97 (2006) 261302 [astro-ph/0603660] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Boyarsky, O. Ruchayskiy and M. Markevitch, Constraints on parameters of radiatively decaying dark matter from the galaxy cluster 1E0657-56, Astrophys. J. 673 (2008) 752 [astro-ph/0611168] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.F. Navarro, C.S. Frenk and S.D. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.F. Navarro, C.S. Frenk and S.D. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Kazantzidis et al., Density profiles of cold dark matter substructure: implications for the missing satellites problem, Astrophys. J. 608 (2004) 663 [astro-ph/0312194] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.N. Bahcall and R.M. Soneira, The universe at faint magnitudes. IModels for the galaxy and the predicted star counts, Astrophys. J. Suppl. 44 (1980) 73.ADSCrossRefGoogle Scholar
  62. [62]
    J. Einasto, Kinematics and dynamics of stellar systems, Trudy Inst. Astrofiz. Alma-Ata 5 (1965)87.ADSGoogle Scholar
  63. [63]
    D. Gruber, J. Matteson, L. Peterson and G. Jung, The spectrum of diffuse cosmic hard x-rays measured with heao-1, astro-ph/9903492 [INSPIRE].
  64. [64]
    L. Bouchet et al., INTEGRAL SPI all-sky view in soft gamma rays: study of point source and galactic diffuse emissions, arXiv:0801.2086 [INSPIRE].
  65. [65]
    S.C. Kappadath et al., The preliminary cosmic diffuse ray spectrum from 800 keV to 30 MeV measured with COMPTEL, in the proceedings of the 24th International Cosmic-Ray Conference, August 28-September 8, Rome, Italy (1995).Google Scholar
  66. [66]
    S.C. Kappadath, Measurement of the cosmic diffuse gamma-ray spectrum from 800 keV to 30 MeV, Ph.D. Thesis, University of New Hampshire, U.S.A (1998).Google Scholar
  67. [67]
    A.W. Strong et al., Diffuse galactic hard X-ray and low-energy gamma-ray continuum, Astron. Astrophys. 120 (1996) 381.ADSGoogle Scholar
  68. [68]
    A.W. Strong, I.V. Moskalenko and O. Reimer, Evaluation of models for diffuse continuum gamma-rays in EGRET range, astro-ph/0306346 [INSPIRE].
  69. [69]
    A.W. Strong, I.V. Moskalenko and O. Reimer, Diffuse galactic continuum gamma rays. A model compatible with EGRET data and cosmic-ray measurements, Astrophys. J. 613 (2004)962 [astro-ph/0406254] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Fermi-LAT collaboration, Fermi-LAT observations of the diffuse gamma-ray emission: implications for cosmic rays and the interstellar medium, Astrophys. J. 750 (2012) 3 [arXiv:1202.4039] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    P. Ullio, L. Bergstrom, J. Edsjo and C.G. Lacey, Cosmological dark matter annihilations into gamma-raysA closer look, Phys. Rev. D 66 (2002) 123502 [astro-ph/0207125] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J.E. Taylor and J. Silk, The clumpiness of cold dark matter: implications for the annihilation signal, Mon. Not. Roy. Astron. Soc. 339 (2003) 505 [astro-ph/0207299] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar
  75. [75]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009)050 [arXiv:0904.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P. Galison and A. Manohar, Two Zs or not two Zs?, Phys. Lett. B 136 (1984) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J.T. Ruderman and T. Volansky, Searching for smoking gun signatures of decaying dark matter, arXiv:0907.4373 [INSPIRE].
  80. [80]
    T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark matter signals from cascade annihilations, JCAP 05 (2009) 016 [arXiv:0901.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].ADSGoogle Scholar
  84. [84]
    APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011)191804 [arXiv:1108.2750] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions \( Y \) → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  88. [88]
    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013)190 [arXiv:1302.3884] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Redondo and M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 02 (2009)005 [arXiv:0811.0326] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].
  92. [92]
    R.E. Shrock, Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories, Nucl. Phys. B 206 (1982) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].ADSGoogle Scholar
  98. [98]
    A. Dolgov and F. Villante, BBN bounds on active sterile neutrino mixing, Nucl. Phys. B 679 (2004)261 [hep-ph/0308083] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    K. Kainulainen, J. Maalampi and J. Peltoniemi, Inert neutrinos in supernovae, Nucl. Phys. B 358 (1991) 435 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].
  102. [102]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000)388 [hep-ph/0005214] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D 65 (2002) 024033 [hep-ph/0107286] [INSPIRE].ADSGoogle Scholar
  104. [104]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    C. Cheung, G. Elor and L. Hall, Gravitino freeze-in, Phys. Rev. D 84 (2011) 115021 [arXiv:1103.4394] [INSPIRE].ADSGoogle Scholar
  107. [107]
    L.J. Hall, J.T. Ruderman and T. Volansky, A cosmological upper bound on superpartner masses, arXiv:1302.2620 [INSPIRE].
  108. [108]
    P. Langacker, The standard model and beyond, CRC Press, Boca Raton, U.S.A. (2010).Google Scholar
  109. [109]
    J.F. Beacom, N.F. Bell and G. Bertone, Gamma-ray constraint on Galactic positron production by MeV dark matter, Phys. Rev. Lett. 94 (2005) 171301 [astro-ph/0409403] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    B.S. Hensley, V. Pavlidou and J.M. Siegal-Gaskins, Novel techniques for decomposing diffuse backgrounds, Mon. Not. Roy. Astron. Soc. 433 (2013) 591 [arXiv:1210.7239] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Rouven Essig
    • 1
  • Eric Kuflik
    • 2
  • Samuel D. McDermott
    • 3
    • 4
  • Tomer Volansky
    • 2
  • Kathryn M. Zurek
    • 3
  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  3. 3.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborUSA
  4. 4.Theoretical Astrophysics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations