Advertisement

Journal of High Energy Physics

, 2013:182 | Cite as

Heterotic G 2-manifold compactifications with fluxes and fermionic condensates

  • Karl-Philip Gemmer
  • Olaf LechtenfeldEmail author
Article

Abstract

We consider flux compactifications of heterotic string theory in the presence of fermionic condensates on M 1,2 × X 7 with both factors carrying a Killing spinor. In other words, M 1,2 is either de Sitter, anti-de Sitter or Minkowski, and X 7 possesses a nearly parallel G 2-structure or has G 2-holonomy. We solve the complete set of field equations and the Bianchi identity to order α . The latter is satisfied via a non-standard embedding by choosing the gauge field to be a G 2-instanton. It is shown that none of the solutions to the field equations is supersymmetric.

Keywords

Flux compactifications Superstring Vacua Superstrings and Heterotic Strings Solitons Monopoles and Instantons 

References

  1. [1]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G. Lopes Cardoso et al., NonKähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Heterotic string theory on nonKähler manifolds with H flux and gaugino condensate, Fortsch. Phys. 52 (2004) 483 [hep-th/0310021] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.R. Frey and M. Lippert, AdS strings with torsion: Non-complex heterotic compactifications, Phys. Rev. D 72 (2005) 126001 [hep-th/0507202] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    P. Manousselis, N. Prezas and G. Zoupanos, Supersymmetric compactifications of heterotic strings with fluxes and condensates, Nucl. Phys. B 739 (2006) 85 [hep-th/0511122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    O. Lechtenfeld, C. Nölle and A.D. Popov, Heterotic compactifications on nearly Kähler manifolds, JHEP 09 (2010) 074 [arXiv:1007.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Chatzistavrakidis, O. Lechtenfeld and A.D. Popov, Nearly Kähler heterotic compactifications with fermion condensates, JHEP 04 (2012) 114 [arXiv:1202.1278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-Dimensional Maxwell-Einstein Supergravity, Its Currents and the Issue of Its Auxiliary Fields, Nucl. Phys. B 195 (1982) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Chapline and N. Manton, Unification of Yang-Mills Theory and Supergravity in Ten-Dimensions, Phys. Lett. B 120 (1983) 105 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Fernández and A. Gray, Riemannian manifolds with structure group G 2, Annali Mat. Pura Appl. 132 (1982) 19.CrossRefzbMATHGoogle Scholar
  12. [12]
    T. Friedrich, I. Kath, A. Moroianu and U. Semmelmann, On nearly parallel G 2 -structures, J. Geom. Phys. 23 (1997) 259.MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. [13]
    R.L. Bryant, Some remarks on G 2 -structures, in Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Bay Turkey (2005), T.O.S. Akbulut and R. Stern eds., International Press, Boston U.S.A. (2006), pg. 75.Google Scholar
  14. [14]
    K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Bilal, J.-P. Derendinger and K. Sfetsos, (Weak) G 2 holonomy from selfduality, flux and supersymmetry, Nucl. Phys. B 628 (2002) 112 [hep-th/0111274] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany
  2. 2.Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations