Journal of High Energy Physics

, 2013:161 | Cite as

Auxiliary gauge mediation: a new route to mini-split supersymmetry

Article

Abstract

The discovery of a standard-model-like Higgs at 126 GeV and the absence of squark signals thus far at the LHC both point towards a mini-split spectrum for supersymmetry. Within standard paradigms, it is non-trivial to realize a mini-split spectrum with heavier sfermions but lighter gauginos while simultaneously generating Higgs sector soft terms of the correct magnitude, suggesting the need for new models of supersymmetry breaking and mediation. In this paper, we present a new approach to mini-split model building based on gauge mediation by “auxiliary groups”, which are the anomaly-free continuous symmetries of the standard model in the limit of vanishing Yukawa couplings. In addition to the well-known flavor SU(3)F and baryon-minus-lepton U(1)B−L groups, we find that an additional U(1)H acting on the Higgs doublets alone can be used to generate Higgs soft masses and B-terms necessary for a complete model of mini-split. Auxiliary gauge mediation is a special case of Higgsed gauge mediation, and we review the resulting two-loop scalar soft terms as well as three-loop gaugino masses. Along the way, we present a complete two-loop calculation of A-terms and B-terms in gauge mediation, which — contrary to a common misconception — includes a non-zero contribution at the messenger threshold which can be sizable in models with light gauginos. We present several phenomenologically acceptable mini-split spectra arising from auxiliary gauge mediation and highlight a complete minimal model which realizes the required spectrum and Higgs sector soft terms with a single U(1)X auxiliary gauge symmetry. We discuss possible experimental consequences.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  4. [4]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys.Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  8. [8]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  9. [9]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].
  10. [10]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Baryakhtar, E. Hardy and J. March-Russell, Axion Mediation, JHEP 07 (2013) 096 [arXiv:1301.0829] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L.E. Ibáñez and I. Valenzuela, The Higgs Mass as a Signature of Heavy SUSY, JHEP 05 (2013) 064 [arXiv:1301.5167] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of General Gauge Mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. McKeen, M. Pospelov and A. Ritz, EDM Signatures of PeV-scale Superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].ADSGoogle Scholar
  17. [17]
    L. Eliaz, A. Giveon, S.B. Gudnason and E. Tsuk, Mild-split SUSY with flavor, JHEP 10 (2013) 136 [arXiv:1306.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Sato, S. Shirai and K. Tobioka, Flavor of Gluino Decay in High-Scale Supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Ibarra, Tachyonic squarks in split supersymmetry, Phys. Lett. B 620 (2005) 164 [hep-ph/0503160] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K. Agashe and M. Graesser, Supersymmetry breaking and the supersymmetric flavor problem: an analysis of decoupling the first two generation scalars, Phys. Rev. D 59 (1999) 015007 [hep-ph/9801446] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Ko, Y. Omura and C. Yu, A Resolution of the Flavor Problem of Two Higgs Doublet Models with an Extra U(1)H Symmetry for Higgs Flavor, Phys. Lett. B 717 (2012) 202 [arXiv:1204.4588] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Gorbatov and M. Sudano, Sparticle Masses in Higgsed Gauge Mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Craig, M. McCullough and J. Thaler, The New Flavor of Higgsed Gauge Mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Craig, M. McCullough and J. Thaler, Flavor Mediation Delivers Natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Groot Nibbelink and T.S. Nyawelo, Two Loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Ford and D. Jones, The effective potential and the differential equations method for Feynman integrals, Phys. Lett. B 274 (1992) 409 [Erratum ibid. B 285 (1992) 399] [INSPIRE].
  33. [33]
    T. Clark, O. Piguet and K. Sibold, The absence of radiative corrections to the axial current anomaly in supersymmetric QED, Nucl. Phys. B 159 (1979) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Konishi, Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.E. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, A chiral supersymmetric standard model, Phys. Lett. B 439 (1998) 301 [hep-ph/9807246] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L.L. Everett, P. Langacker, M. Plümacher and J. Wang, Alternative supersymmetric spectra, Phys. Lett. B 477 (2000) 233 [hep-ph/0001073] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z -mediated Supersymmetry Breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Aspects of Z-mediated Supersymmetry Breaking, Phys. Rev. D 77 (2008) 085033 [arXiv:0801.3693] [INSPIRE].ADSGoogle Scholar
  42. [42]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    B.A. Dobrescu, B-L mediated supersymmetry breaking, Phys. Lett. B 403 (1997) 285 [hep-ph/9703390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Kikuchi and T. Kubo, Radiative B-L symmetry breaking and the Z-prime mediated SUSY breaking, Phys. Lett. B 666 (2008) 262 [arXiv:0804.3933] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Mohapatra and S. Nandi, A new messenger sector for gauge mediated supersymmetry breaking, Phys. Rev. Lett. 79 (1997) 181 [hep-ph/9702291] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    CMS collaboration, Search for supersymmetry in events with photons and missing energy, CMS-PAS-SUS-12-018.
  48. [48]
    CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].ADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    N.J. Craig and D.R. Green, Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.L. Feng, Z. Surujon and H.-B. Yu, Confluence of Constraints in Gauge Mediation: The 125 GeV Higgs Boson and Goldilocks Cosmology, Phys. Rev. D 86 (2012) 035003 [arXiv:1205.6480] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Yonatan Kahn
    • 1
  • Matthew McCullough
    • 1
  • Jesse Thaler
    • 1
  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations