Journal of High Energy Physics

, 2013:158

The mass spectrum of the Schwinger model with matrix product states

Open Access
Article

Abstract

We show the feasibility of tensor network solutions for lattice gauge theories in Hamiltonian formulation by applying matrix product states algorithms to the Schwinger model with zero and non-vanishing fermion mass. We introduce new techniques to compute excitations in a system with open boundary conditions, and to identify the states corresponding to low momentum and different quantum numbers in the continuum. For the ground state and both the vector and scalar mass gaps in the massive case, the MPS technique attains precisions comparable to the best results available from other techniques.

Keywords

Field Theories in Lower Dimensions Lattice Gauge Field Theories 

References

  1. [1]
    I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys. 115 (1988) 477 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Klümper, A. Schadschneider, and J. Zittartz, Equivalence and solution of anisotropic spin-1 models and generalized t-J fermion models in one dimension, J. Phys. A 24 (1991) L955.ADSGoogle Scholar
  3. [3]
    A. Klümper, A. Schadschneider and J. Zittartz, Groundstate properties of a generalized VBS-model, Z. Phys. B 87 (1992) 281.ADSCrossRefGoogle Scholar
  4. [4]
    M. Fannes, B. Nachtergaele and R. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys. 144 (1992) 443 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    F. Verstraete, D. Porras and J.I. Cirac, Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective, Phys. Rev. Lett. 93 (2004) 227205 [cond-mat/0404706].ADSCrossRefGoogle Scholar
  6. [6]
    D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix Product State Representations, Quant. Inf. Comput. 7 (2007) 401 [quant-ph/0608197].MathSciNetMATHGoogle Scholar
  7. [7]
    S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992) 2863 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259 [cond-mat/0409292].ADSCrossRefGoogle Scholar
  9. [9]
    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals Phys. 326 (2011) 96 [arXiv:1008.3477].ADSCrossRefMATHGoogle Scholar
  10. [10]
    G. Vidal, Efficient Simulation of One-Dimensional Quantum Many-Body Systems, Phys. Rev. Lett. 93 (2004) 040502 [quant-ph/0310089].ADSCrossRefGoogle Scholar
  11. [11]
    A.J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech. (2004) P04005 [cond-mat/0403313].
  12. [12]
    G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension, Phys. Rev. Lett. 98 (2007) 070201 [cond-mat/0605597].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    F. Verstraete and J. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE].
  14. [14]
    G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, J. Phys. A 42 (2009) 4004 [arXiv:0910.1130].MathSciNetGoogle Scholar
  16. [16]
    J.I. Cirac and G. Sierra, Infinite matrix product states, conformal field theory and the Haldane-Shastry model, Phys. Rev. B 81 (2010) 104431 [arXiv:0911.3029].ADSCrossRefGoogle Scholar
  17. [17]
    F. Verstraete and J. Cirac, Continuous Matrix Product States for Quantum Fields, Phys. Rev. Lett. 104 (2010) 190405 [arXiv:1002.1824] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T.J. Osborne, J. Eisert and F. Verstraete, Holographic quantum states, Phys. Rev. Lett. 105 (2010) 260401 [arXiv:1005.1268] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J. Haegeman, T.J. Osborne, H. Verschelde and F. Verstraete, Entanglement Renormalization for Quantum Fields in Real Space, Phys. Rev. Lett. 110 (2013) 100402 [arXiv:1102.5524] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Byrnes, P. Sriganesh, R. Bursill and C. Hamer, Density matrix renormalization group approach to the massive Schwinger model, Phys. Rev. D 66 (2002) 013002 [hep-lat/0202014] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Sugihara, Matrix product representation of gauge invariant states in a \( {{\mathbb{Z}}_2} \) lattice gauge theory, JHEP 07 (2005) 022 [hep-lat/0506009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L. Tagliacozzo and G. Vidal, Entanglement renormalization and gauge symmetry, Phys. Rev. B 83 (2011) 115127 [arXiv:1007.4145] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.J. Weir, Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group, Phys. Rev. D 82 (2010) 025003 [arXiv:1003.0698] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, arXiv:1302.5582 [INSPIRE].
  25. [25]
    J. Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128 (1962) 2425MathSciNetADSCrossRefMATHGoogle Scholar
  26. [26]
    S.R. Coleman, More About the Massive Schwinger Model, Annals Phys. 101 (1976) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Gutsfeld, H. Kastrup and K. Stergios, Mass spectrum and elastic scattering in the massive SU(2)(f) Schwinger model on the lattice, Nucl. Phys. B 560 (1999) 431 [hep-lat/9904015] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Gattringer, I. Hip and C. Lang, The chiral limit of the two flavor lattice Schwinger model with Wilson fermions, Phys. Lett. B 466 (1999) 287 [hep-lat/9909025] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Giusti, C. Hölbling and C. Rebbi, Schwinger model with the overlap Dirac operator: Exact results versus a physics motivated approximation, Phys. Rev. D 64 (2001) 054501 [hep-lat/0101015] [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Christian, K. Jansen, K. Nagai and B. Pollakowski, Scaling test of fermion actions in the Schwinger model, Nucl. Phys. B 739 (2006) 60 [hep-lat/0510047] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W. Bietenholz, I. Hip, S. Shcheredin and J. Volkholz, A Numerical Study of the 2-Flavour Schwinger Model with Dynamical Overlap Hypercube Fermions, Eur. Phys. J. C 72 (2012) 1938 [arXiv:1109.2649] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Banks, L. Susskind and J.B. Kogut, Strong Coupling Calculations of Lattice Gauge Theories: (1+1)-Dimensional Exercises, Phys. Rev. D 13 (1976) 1043 [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Crewther and C. Hamer, Eigenvalues for the Massive Schwinger Model From a Finite Lattice Hamiltonian Approach, Nucl. Phys. B 170 (1980) 353 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    C. Adam, Massive Schwinger model within mass perturbation theory, Annals Phys. 259 (1997) 1 [hep-th/9704064] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  35. [35]
    C. Hamer, J.B. Kogut, D. Crewther and M. Mazzolini, The Massive Schwinger Model on a Lattice: Background Field, Chiral Symmetry and the String Tension, Nucl. Phys. B 208 (1982) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Sriganesh, R. Bursill and C. Hamer, New finite lattice study of the massive Schwinger model, Phys. Rev. D 62 (2000) 034508 [hep-lat/9911021] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Cichy, A. Kujawa-Cichy and M. Szyniszewski, Lattice Hamiltonian approach to the massless Schwinger model: precise extraction of the mass gap, Comput. Phys. Commun. 184 (2013) 1666 [arXiv:1211.6393] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilsons Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Hamer, W.-H. Zheng and J. Oitmaa, Series expansions for the massive Schwinger model in Hamiltonian lattice theory, Phys. Rev. D 56 (1997) 55 [hep-lat/9701015] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Verstraete, V. Murg and J.I. Cirac, Matrix product states, projected entangled pair states and variational renormalization group methods for quantum spin systems, Adv. Phys. 57 (2008) 143 [arXiv:0907.2796].ADSCrossRefGoogle Scholar
  41. [41]
    K.A. Hallberg, New trends in density matrix renormalization, Adv. Phys. 55 (2006) 477 [cond-mat/0609039] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Porras, F. Verstraete and J.I. Cirac, Renormalization algorithm for the calculation of spectra of interacting quantum systems, Phys. Rev. B 73 (2006) 014410 [cond-mat/0504717].ADSCrossRefGoogle Scholar
  43. [43]
    M.L. Wall and L.D. Carr, Out-of-equilibrium dynamics with matrix product states, New J. Phys. 14 (2012) 125015 [arXiv:1205.1020].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J. Haegeman et al., Variational matrix product ansatz for dispersion relations, Phys. Rev. B 85 (2012) 100408 [arXiv:1103.2286].ADSCrossRefGoogle Scholar
  45. [45]
    P. Pippan, S.R. White and H.G. Evertz, Efficient Matrix Product State Method for periodic boundary conditions, Phys. Rev. B 81 (2010) 081103 [arXiv:0801.1947].ADSCrossRefGoogle Scholar
  46. [46]
    B. Pirvu, F. Verstraete and G. Vidal, Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions, Phys. Rev. B 83 (2011) 125104 [arXiv:1005.5195].ADSCrossRefGoogle Scholar
  47. [47]
    B. Pirvu, V. Murg, J.I. Cirac and F. Verstraete, Matrix product operator representations, New J. Phys. 12 (2010) 025012 [arXiv:0804.3976].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    E. Jeckelmann, Dynamical density-matrix renormalization-group method, Phys. Rev. B 66 (2002) 045114 [cond-mat/0203500].ADSCrossRefGoogle Scholar
  49. [49]
    T. Banks, L. Susskind and J.B. Kogut, Strong Coupling Calculations of Lattice Gauge Theories: (1 + 1)-Dimensional Exercises, Phys. Rev. D 13 (1976) 1043 [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.C. Bañuls, K. Cichy, J.I. Cirac, K. Jansen and H. Saito, Matrix Product States for Lattice Field Theories, arXiv:1310.4118 [INSPIRE].
  51. [51]
    C.V. Kraus, N. Schuch, F. Verstraete and J.I. Cirac, Fermionic projected entangled pair states, Phys. Rev. A 81 (2010) 052338 [arXiv:0904.4667].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    P. Corboz, R. Orús, B. Bauer and G. Vidal, Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states, Phys. Rev. B 81 (2010) 165104 [arXiv:0912.0646].ADSCrossRefGoogle Scholar
  53. [53]
    C. Pineda, T. Barthel and J. Eisert, Unitary circuits for strongly correlated fermions, Phys. Rev. A 81 (2010) 050303 [arXiv:0905.0669].ADSCrossRefGoogle Scholar
  54. [54]
    ETM collaboration, R. Baron et al., Light Meson Physics from Maximally Twisted Mass Lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Dürr et al., Lattice QCD at the physical point: Simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • M.C. Bañuls
    • 1
  • K. Cichy
    • 2
    • 3
  • J.I. Cirac
    • 1
  • K. Jansen
    • 2
    • 4
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany
  2. 2.NIC, DESY ZeuthenZeuthenGermany
  3. 3.Faculty of PhysicsAdam Mickiewicz UniversityPoznanPoland
  4. 4.Department of PhysicsUniversity of CyprusNicosiaCyprus

Personalised recommendations