Advertisement

Journal of High Energy Physics

, 2013:155 | Cite as

On spectrum of ILW hierarchy in conformal field theory

  • A. V. LitvinovEmail author
Article

Abstract

We consider a system of Integrals of Motion in conformal field theory related to the \( \mathfrak{g}\mathfrak{l}(2) \) Intermediate Long Wave equation. It interpolates between the system studied by Bazhanov, Lukyanov and Zamolodchikov and the one studied by the author and collaborators. We find Bethe anzatz equations for the spectrum of this system and its \( \mathfrak{g}\mathfrak{l}(n) \) generalizations.

Keywords

Conformal and W Symmetry Integrable Hierarchies Bethe Ansatz Integrable Field Theories 

References

  1. [1]
    A. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641.MathSciNetGoogle Scholar
  2. [2]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. [3]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. [4]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. [5]
    P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. [7]
    V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Higher level eigenvalues of Q operators and Schroedinger equation, Adv. Theor. Math. Phys. 7 (2004) 711 [hep-th/0307108] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    S. Lukyanov and A. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    P. Dorey, S. Faldella, S. Negro and R. Tateo, The Bethe ansatz and the Tzitzeica-Bullough-Dodd equation, Phil. Trans. Roy. Soc. Lond. A 371 (2013) 20120052 [arXiv:1209.5517] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S.L. Lukyanov, ODE/IM correspondence for the Fateev model, arXiv:1303.2566 [INSPIRE].
  12. [12]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. [13]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. [14]
    D. Lebedev and A. Radul, Generalized internal long waves equations: construction, hamiltonian structure and conservation laws, Commun. Math. Phys. 91 (1983) 543 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Feigin and E. Frenkel, Quantization of soliton systems and Langlands duality, arXiv:0705.2486 [INSPIRE].
  16. [16]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE].
  18. [18]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Nekrasov and A. Okounkov, Quantum cohomology and quantum intermediate long wave equation, in preparation.Google Scholar
  20. [20]
    V. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. [21]
    N. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys. 79 (1989) 502.MathSciNetCrossRefGoogle Scholar
  22. [22]
    C.-N. Yang and C. Yang, One-dimensional chain of anisotropic spin spin interactions. 1. Proof of Bethes hypothesis for ground state in a finite system, Phys. Rev. 150 (1966) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.J. Baxter, Exactly solved models in statistical mechanics, Dover Publications, U.S.A. (2008).Google Scholar
  24. [24]
    K.K. Kozlowski and E.K. Sklyanin, Combinatorics of generalized Bethe equations, Lett. Math. Phys. 103 (2013) 1047 [arXiv:1205.2968].MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. [25]
    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and (gl N , gl M) dualities, discrete versus differential, Adv. Math. 218 (2008) 216 [math/0605172].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013), no. 3 299-329 [arXiv:1206.6349] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in omega background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475 [hep-th/0105177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    V. Fateev and A. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B. Estienne, V. Pasquier, R. Santachiara and D. Serban, Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model, Nucl. Phys. B 860 (2012) 377 [arXiv:1110.1101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].
  35. [35]
    H. Boos, M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ Model IV: CFT limit, Commun. Math. Phys. 299 (2010) 825 [arXiv:0911.3731] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  36. [36]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Bershtein, V. Fateev and A. Litvinov, Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory, Nucl. Phys. B 847 (2011) 413 [arXiv:1011.4090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Belavin, M. Bershtein, B. Feigin, A. Litvinov and G. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Comm. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.NHETC, Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.

Personalised recommendations