Advertisement

Journal of High Energy Physics

, 2013:127 | Cite as

Lifshitz from AdS at finite temperature and top down models

  • Yegor Korovin
  • Kostas Skenderis
  • Marika Taylor
Article

Abstract

We construct analytically an asymptotically Lifshitz black brane with dynamical exponent z = 1 + 2 in an Einstein-Proca model, where is a small parameter. In previous work we showed that the holographic dual QFT is a deformation of a CFT by the time component of a vector operator and the parameter is the corresponding deformation parameter. In the black brane background this operator additionally acquires a vacuum expectation value. We explain how the QFT Ward identity associated with Lifshitz invariance leads to a conserved mass and compute analytically the thermodynamic quantities showing that they indeed take the form implied by Lifshitz invariance. In the second part of the paper we consider top down Lifshitz models with dynamical exponent close to one and show that they can be understood in terms of vector deformations of conformal field theories. However, in all known cases, both the conformal field theory and its Lifshitz deformations have modes that violate the Breitenlohner-Freedman bound.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Black Holes in String Theory 

References

  1. [1]
    S. Sachdev, Condensed matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273 [arXiv:1002.2947] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  3. [3]
    G.T. Horowitz, Theory of superconductivity, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    B.C. van Rees, Correlation functions for Schrödinger backgrounds, arXiv:1206.6507 [INSPIRE].
  12. [12]
    Y. Korovin, K. Skenderis and M. Taylor, Lifshitz as a deformation of anti-de Sitter, JHEP 08 (2013) 026 [arXiv:1304.7776] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  14. [14]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz black hole in four dimensional R 2 gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M.C. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    I. Amado and A.F. Faedo, Lifshitz black holes in string theory, JHEP 07 (2011) 004 [arXiv:1105.4862] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].ADSGoogle Scholar
  26. [26]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz space-times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    H. Maeda and G. Giribet, Lifshitz black holes in Brans-Dicke theory, JHEP 11 (2011) 015 [arXiv:1105.1331] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J. Matulich and R. Troncoso, Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum, JHEP 10 (2011) 118 [arXiv:1107.5568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Iizuka et al., Bianchi attractors: a classification of extremal black brane geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H. Singh, Lifshitz/Schrödinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, Phys. Rev. D 86 (2012) 066009 [arXiv:1204.4858] [INSPIRE].ADSGoogle Scholar
  37. [37]
    E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-violation on probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    N. Iizuka et al., Extremal horizons with reduced symmetry: hyperscaling violation, stripes and a classification for the homogeneous case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with hyperscaling violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Bueno, W. Chemissany and C. Shahbazi, On hvLif-like solutions in gauged supergravity, arXiv:1212.4826 [INSPIRE].
  43. [43]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].
  47. [47]
    G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    G. Bertoldi, B.A. Burrington, A.W. Peet and I.G. Zadeh, Lifshitz-like black brane thermodynamics in higher dimensions, Phys. Rev. D 83 (2011) 126006 [arXiv:1101.1980] [INSPIRE].ADSGoogle Scholar
  50. [50]
    L. Barclay, R. Gregory, S. Parameswaran, G. Tasinato and I. Zavala, Lifshitz black holes in IIA supergravity, JHEP 05 (2012) 122 [arXiv:1203.0576] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    K. Narayan, Lifshitz-like systems and AdS null deformations, Phys. Rev. D 84 (2011) 086001 [arXiv:1103.1279] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-relativistic solutions of N = 2 gauged supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    M. Petrini and A. Zaffaroni, A note on supersymmetric type II solutions of Lifshitz type, JHEP 07 (2012) 051 [arXiv:1202.5542] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    W. Chemissany, D. Geissbuhler, J. Hartong and B. Rollier, Holographic renormalization for z = 2 Lifshitz space-times from AdS, Class. Quant. Grav. 29(2012) 235017 [arXiv:1205.5777] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    I. Papadimitriou, Holographic renormalization of general dilaton-axion gravity, JHEP 08 (2011) 119 [arXiv:1106.4826] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi renormalization for Lifshitz spacetime, JHEP 01 (2012) 058 [arXiv:1107.5562] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Conformal Lifshitz gravity from holography, JHEP 05 (2012) 010 [arXiv:1112.5660] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R.B. Mann and R. McNees, Holographic renormalization for asymptotically Lifshitz spacetimes, JHEP 10 (2011) 129 [arXiv:1107.5792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Baggio, J. de Boer and K. Holsheimer, Anomalous breaking of anisotropic scaling symmetry in the quantum Lifshitz model, JHEP 07 (2012) 099 [arXiv:1112.6416] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].
  67. [67]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    H. Braviner, R. Gregory and S.F. Ross, Flows involving Lifshitz solutions, Class. Quant. Grav. 28 (2011) 225028 [arXiv:1108.3067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    J. Jeong, Ö. Kelekci and E.O Colgain, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    L. Romans, The F(4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    L. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Yegor Korovin
    • 1
  • Kostas Skenderis
    • 1
    • 2
    • 3
  • Marika Taylor
    • 2
    • 3
  1. 1.KdV Institute for MathematicsAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsAmsterdamThe Netherlands
  3. 3.Mathematical Sciences and STAG research centreUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations