Journal of High Energy Physics

, 2013:126 | Cite as

Microscopic unitary description of tidal excitations in high-energy string-brane collisions

  • Giuseppe D’Appollonio
  • Paolo Di Vecchia
  • Rodolfo Russo
  • Gabriele Veneziano
Open Access
Article

Abstract

The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high-energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

Keywords

Superstrings and Heterotic Strings D-branes 

References

  1. [1]
    G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    I. Muzinich and M. Soldate, High-energy unitarity of gravitation and strings, Phys. Rev. D 37 (1988) 359 [INSPIRE].ADSGoogle Scholar
  3. [3]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Sundborg, High-energy asymptotics: the one loop string amplitude and resummation, Nucl. Phys. B 306 (1988) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from Planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev. D 74 (2006) 106006 [hep-th/0604072] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Veneziano, String-theoretic unitary S-matrix at the threshold of black-hole production, JHEP 11 (2004) 001 [hep-th/0410166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Penrose, unpublished, 1974.Google Scholar
  10. [10]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06 (2002) 057 [gr-qc/0203093] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev. D 70 (2004) 104026 [hep-th/0409131] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP 02 (2008) 049 [arXiv:0712.1209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Marchesini and E. Onofri, High energy gravitational scattering: a numerical study, JHEP 06 (2008) 104 [arXiv:0803.0250] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse, JHEP 09 (2008) 023 [arXiv:0804.3321] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse. II. A momentum space analysis, JHEP 09 (2008) 024 [arXiv:0805.2973] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse, JHEP 11 (2008) 047 [arXiv:0807.2117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Ciafaloni, D. Colferai and G. Falcioni, Unitarity alternatives in the reduced-action model for gravitational collapse, JHEP 09 (2011) 044 [arXiv:1106.5628] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: leading eikonal and beyond, JHEP 11 (2010) 100 [arXiv:1008.4773] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Veneziano, Topics In String Theory, Proceedings of DST workshop on Particle Physics: Superstring Theory, Kanpur 1988, H.S. Mani and R.eds., Ramachandran World Scientific Publishing Company (1988), pg. 1.Google Scholar
  21. [21]
    H. de Vega and N.G. Sanchez, Quantum string scattering in the Aichelburg-Sexl geometry, Nucl. Phys. B 317 (1989) 706 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge amplitudes and emission vertices, Phys. Lett. B 223 (1989) 318 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge amplitudes and graviton radiation at planckian energies, Nucl. Phys. B 338 (1990) 114 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    E. Del Giudice, P. Di Vecchia and S. Fubini, General properties of the dual resonance model, Annals Phys. 70 (1972) 378 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Black and C. Monni, High energy string-brane scattering for massive states, Nucl. Phys. B 859 (2012) 299 [arXiv:1107.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Bianchi and P. Teresi, Scattering higher spins off D-branes, JHEP 01 (2012) 161 [arXiv:1108.1071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M.B. Green and J.H. Schwarz, Superstring interactions, Nucl. Phys. B 218 (1983) 43 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M.B. Green, J.H. Schwarz and L. Brink, Superfield theory of type II superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M.B. Green and M. Gutperle, Light cone supersymmetry and D-branes, Nucl. Phys. B 476 (1996) 484 [hep-th/9604091] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Lee and R. Russo, Holographic cubic vertex in the pp-wave, Nucl. Phys. B 705 (2005) 296 [hep-th/0409261] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    E. Cremmer and J.-L. Gervais, Infinite component field theory of interacting relativistic strings and dual theory, Nucl. Phys. B 90 (1975) 410 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Hornfeck, Three reggeon light cone vertex of the Neveu-Schwarz string, Nucl. Phys. B 293 (1987) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Hanany, D. Forcella and J. Troost, The covariant perturbative string spectrum, Nucl. Phys. B 846 (2011) 212 [arXiv:1007.2622] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    M. Bianchi, L. Lopez and R. Richter, On stable higher spin states in Heterotic String Theories, JHEP 03 (2011) 051 [arXiv:1010.1177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    E. Del Giudice and P. Di Vecchia, Characterization of the physical states in dual-resonance models, Nuovo Cim. A 70 (1970) 579 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Veneziano, Quantum hair and the string-black hole correspondence, Class. Quant. Grav. 30 (2013) 092001 [arXiv:1212.2606] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. Brower and K. Friedman, Spectrum generating algebra and no ghost theorem for the Neveu-Schwarz model, Phys. Rev. D 7 (1973) 535 [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Schwarz, Physical states and Pomeron poles in the dual pion model, Nucl. Phys. B 46 (1972) 61 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Giuseppe D’Appollonio
    • 1
  • Paolo Di Vecchia
    • 2
    • 3
  • Rodolfo Russo
    • 4
    • 5
  • Gabriele Veneziano
    • 6
    • 7
  1. 1.Dipartimento di FisicaUniversità di Cagliari and INFN, Cittadella UniversitariaMonserratoItaly
  2. 2.The Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  3. 3.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  4. 4.Queen Mary University of LondonLondonUnited Kingdom
  5. 5.Laboratoire de Physique Théorique de L’Ecole Normale SupérieureParis cedexFrance
  6. 6.Collège de FranceParisFrance
  7. 7.Theory Division, CERNGeneva 23Switzerland

Personalised recommendations