Journal of High Energy Physics

, 2013:100 | Cite as

Baryogenesis through split Higgsogenesis

  • Sacha Davidson
  • Ricardo González FelipeEmail author
  • Hugo Serôdio
  • João P. Silva
Open Access


We study the cosmological evolution of asymmetries in the two-Higgs doublet extension of the Standard Model, prior to the electroweak phase transition. If Higgs flavour-exchanging interactions are sufficiently slow, then a relative asymmetry among the Higgs doublets corresponds to an effectively conserved quantum number. Since the magnitude of the Higgs couplings depends on the choice of basis in the Higgs doublet space, we attempt to formulate basis-independent out-of-equilibrium conditions. We show that an initial asymmetry between the Higgs scalars, which could be generated by CP violation in the Higgs sector, will be transformed into a baryon asymmetry by the sphalerons, without the need of BL violation. This novel mechanism of baryogenesis through (split) Higgsogenesis is exemplified with simple scenarios based on the out-of-equilibrium decay of heavy singlet scalar fields into the Higgs doublets.


Higgs Physics CP violation 


  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  4. [4]
    E.W. Kolb and S. Wolfram, Baryon number generation in the early universe, Nucl. Phys. B 172 (1980) 224 [Erratum ibid. B 195 (1982) 542] [INSPIRE].
  5. [5]
    A. Dolgov, Non-GUT baryogenesis, Phys. Rept. 222 (1992) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    For recent reviews see e.g. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].
  7. [7]
    G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [INSPIRE].
  9. [9]
    M. Quirós, Electroweak baryogenesis, J. Phys. A 40 (2007) 6573 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].
  11. [11]
    J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs hunters guide, Perseus Publishing, Cambridge MA U.S.A. (1990).Google Scholar
  12. [12]
    For a recent review on 2HDM see for example G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
  13. [13]
    P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].ADSGoogle Scholar
  14. [14]
    F.R. Klinkhamer and N. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  18. [18]
    S.Y. Khlebnikov and M. Shaposhnikov, The statistical theory of anomalous Fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.Y. Khlebnikov and M. Shaposhnikov, Melting of the Higgs vacuum: conserved numbers at high temperature, Phys. Lett. B 387 (1996) 817 [hep-ph/9607386] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].ADSGoogle Scholar
  21. [21]
    For recent reviews see for example B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 09 (2013) 110] [arXiv:1304.0028] [INSPIRE].
  22. [22]
    A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCthe story so far, arXiv:1304.5225 [INSPIRE].
  23. [23]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].ADSGoogle Scholar
  24. [24]
    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, arXiv:1305.1649 [INSPIRE].
  25. [25]
    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
  26. [26]
    P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM confronting LHC data, arXiv:1305.4587 [INSPIRE].
  27. [27]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the Standard Model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Krawczyk, D. Sokolowska and B. Swiezewska, Inert doublet model with a 125 GeV Higgs, arXiv:1304.7757 [INSPIRE].
  31. [31]
    M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, Constraining inert dark matter by R γγ and WMAP data, JHEP 09 (2013) 055 [arXiv:1305.6266] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Swiezewska and M. Krawczyk, 2-photon decay rate of the scalar boson in the inert doublet model, arXiv:1305.7356 [INSPIRE].
  33. [33]
    B. Swiezewska, Yukawa independent constraints for 2HDMs with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 055027 [arXiv:1209.5725] [INSPIRE].ADSGoogle Scholar
  34. [34]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).
  36. [36]
    D. Comelli and J. Espinosa, Bosonic thermal masses in supersymmetry, Phys. Rev. D 55 (1997) 6253 [hep-ph/9606438] [INSPIRE].ADSGoogle Scholar
  37. [37]
    I. Ivanov, Thermal evolution of the ground state of the most general 2HDM, Acta Phys. Polon. B 40 (2009) 2789 [arXiv:0812.4984] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Ginzburg, I. Ivanov and K. Kanishev, The evolution of vacuum states and phase transitions in 2HDM during cooling of universe, Phys. Rev. D 81 (2010) 085031 [arXiv:0911.2383] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R.N. Mohapatra and X.-M. Zhang, QCD sphalerons at high temperature and baryogenesis at electroweak scale, Phys. Rev. D 45 (1992) 2699 [INSPIRE].ADSGoogle Scholar
  40. [40]
    H. Davoudiasl and R.N. Mohapatra, On relating the genesis of cosmic baryons and dark matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    G. Servant and S. Tulin, Higgsogenesis, Phys. Rev. Lett. 111 (2013) 151601 [arXiv:1304.3464] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Borah and J.M. Cline, Inert doublet dark matter with strong electroweak phase transition, Phys. Rev. D 86 (2012) 055001 [arXiv:1204.4722] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Gil, P. Chankowski and M. Krawczyk, Inert dark matter and strong electroweak phase transition, Phys. Lett. B 717 (2012) 396 [arXiv:1207.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at m h ~126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Sacha Davidson
    • 1
  • Ricardo González Felipe
    • 2
    • 3
    Email author
  • Hugo Serôdio
    • 4
  • João P. Silva
    • 2
    • 3
  1. 1.IPNL, Université de LyonUniversité Lyon 1, CNRS/IN2P3Villeurbanne cedexFrance
  2. 2.Instituto Superior de Engenharia de Lisboa — ISELLisboaPortugal
  3. 3.Centro de Física Teórica de Partículas (CFTP), Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  4. 4.Instituto de Física CorpuscularUniversitat de València — CSIC, Edificio Institutos de InvestigaciónPaternaSpain

Personalised recommendations