Journal of High Energy Physics

, 2013:84 | Cite as

Minimally flavored colored scalar in \( \overline{B}\to {D^{{\left( * \right)}}}\tau \overline{\nu} \) and the mass matrices constraints

  • Ilja Doršner
  • Svjetlana Fajfer
  • Nejc Košnik
  • Ivan Nišandžić
Article

Abstract

The presence of a colored scalar that is a weak doublet with fractional electric charges of |Q| = 2/3 and |Q| = 5/3 with mass below 1 TeV can provide an explanation of the observed branching ratios in \( B\to {D^{{\left( * \right)}}}\tau \overline{\nu} \) decays. The required combination of scalar and tensor operators in the effective Hamiltonian for \( b\to c\tau \overline{\nu} \) is generated through the t-channel exchange. We focus on a scenario with a minimal set of Yukawa couplings that can address a semitauonic puzzle and show that its resolution puts a nontrivial bound on the product of the scalar couplings to \( \overline{\tau}b \) and \( \overline{c}\nu \). We also derive additional constraints posed by \( Z\to b\overline{b} \), muon magnetic moment, lepton flavor violating decays μ → eγ, τ → μγ, τ → eγ, and τ electric dipole moment. The minimal set of Yukawa couplings is not only compatible with the mass generation in an SU(5) unification framework, a natural environment for colored scalars, but specifies all matter mixing parameters except for one angle in the up-type quark sector. We accordingly spell out predictions for the proton decay signatures through gauge boson exchange and show that p → π0e+ is suppressed with respect to \( p\to {K^{+}}\overline{\nu} \) and even p → K0e+ in some parts of available parameter space. Impact of the colored scalar embedding in 45-dimensional representation of SU(5) on low-energy phenomenology is also presented. Finally, we make predictions for rare top and charm decays where presence of this scalar can be tested independently.

Keywords

Beyond Standard Model B-Physics 

References

  1. [1]
    BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B}\to {D^{{\left( * \right)}}}{\tau^{-}}{{\overline{\nu}}_{\tau }} \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Belle collaboration, A. Matyja et al., Observation of B 0D ∗−τ +ντ decay at Belle, Phys. Rev. Lett. 99 (2007) 191807 [arXiv:0706.4429] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Fajfer and N. Kosnik, Leptoquarks in FCNC charm decays, Phys. Rev. D 79 (2009) 017502 [arXiv:0810.4858] [INSPIRE].ADSGoogle Scholar
  5. [5]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Can scalar leptoquarks explain the f D s puzzle?, Phys. Lett. B 682 (2009) 67 [arXiv:0906.5585] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.S. Kronfeld, Non-standard physics in leptonic and semileptonic decays of charmed mesons, PoS (LATTICE 2008) 282 [arXiv:0812.2030] [INSPIRE].
  7. [7]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Davidson and P. Verdier, Leptoquarks decaying to a top quark and a charged lepton at hadron colliders, Phys. Rev. D 83 (2011) 115016 [arXiv:1102.4562] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.M. Barr and X. Calmet, Observable proton decay from Planck scale physics, Phys. Rev. D 86 (2012) 116010 [arXiv:1203.5694] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Dorsner and I. Mocioiu, Predictions from type-II see-saw mechanism in SU(5), Nucl. Phys. B 796 (2008) 123 [arXiv:0708.3332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in tt production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys. Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in \( B\to {D^{{\left( * \right)}}}\tau {{\overline{\nu}}_{\tau }} \) decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \( B\to {D^{*}}\tau {{\overline{\nu}}_{\tau }} \) sensitivity to new physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτ ν, B → D (∗)τ ν and B → τ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Datta, M. Duraisamy and D. Ghosh, Diagnosing new physics in b → cτ ντ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Becirevic, N. Kosnik and A. Tayduganov, \( \overline{B}\to D\tau {{\overline{\nu}}_{\tau }} \) vs. \( \overline{B}\to D\mu {{\overline{\nu}}_{\mu }} \), Phys. Lett. B 716 (2012) 208 [arXiv:1206.4977] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Choudhury, D.K. Ghosh and A. Kundu, B decay anomalies in an effective theory, Phys. Rev. D 86 (2012) 114037 [arXiv:1210.5076] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in B → D (∗)τντ and B → τντ decays,JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D^{{\left( * \right)}}}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Ko, Y. Omura and C. Yu, B → D (∗)τ ν and B → τ ν in chiral U(1) models with flavored multi Higgs doublets, JHEP 03 (2013) 151 [arXiv:1212.4607] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Chetyrkin, Quark mass anomalous dimension to \( \mathcal{O}\left( {\alpha_S^4} \right) \) , Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Gracey, Three loop MS-bar tensor current anomalous dimension in QCD, Phys. Lett. B 488 (2000) 175 [hep-ph/0007171] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Melikhov and B. Stech, Weak form-factors for heavy meson decays: an update, Phys. Rev. D 62 (2000) 014006 [hep-ph/0001113] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A.F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 1. Formalism and meson form-factors, Phys. Rev. D 47 (1993) 2965 [hep-ph/9209268] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 2. Baryon form-factors, Phys. Rev. D 47 (1993) 2982 [hep-ph/9209269] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Neubert, Short distance expansion of heavy quark currents, Phys. Rev. D 46 (1992) 2212 [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. de Divitiis, R. Petronzio and N. Tantalo, Quenched lattice calculation of semileptonic heavy-light meson form factors, JHEP 10 (2007) 062 [arXiv:0707.0587] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B}\to {D^{{\left( * \right)}}}\ell \overline{\nu} \) form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Isgur and M.B. Wise, Relationship between form-factors in semileptonic \( \overline{B} \) and D decays and exclusive rare \( \overline{B} \) meson decays, Phys. Rev. D 42 (1990) 2388 [INSPIRE].ADSGoogle Scholar
  36. [36]
    K. Hagiwara, A.D. Martin and M. Wade, The semileptonic decays B → M ντ as a probe of hadron dynamics, Z. Phys. C 46 (1990) 299 [INSPIRE].Google Scholar
  37. [37]
    BaBar collaboration, J. Lees et al., Measurement of an excess of B → D (∗)τ ν decays and implications for charged Higgs bosons, arXiv:1303.0571 [INSPIRE].
  38. [38]
    B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Fajfer, A. Greljo, J.F. Kamenik and I. Mustac, Light Higgs and vector-like quarks without prejudice, JHEP 07 (2013) 155 [arXiv:1304.4219] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to \( si{n^2}\theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [Erratum ibid. 10 (2013) 044] [arXiv:1205.0299] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the Standard Model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Baak et al., The electroweak fit of the Standard Model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  44. [44]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Davidson and S. Descotes-Genon, Minimal flavour violation for leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top AFB with parity violation constraints, Phys. Rev. D 86 (2012) 034029 [arXiv:1203.1320] [INSPIRE].ADSGoogle Scholar
  47. [47]
    F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    K.-M. Cheung, Muon anomalous magnetic moment and leptoquark solutions, Phys. Rev. D 64 (2001) 033001 [hep-ph/0102238] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  51. [51]
    Belle collaboration, K. Inami et al., Search for the electric dipole moment of the τ lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ±e ±γ andτ±μ ±γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, arXiv:1303.0754 [INSPIRE].
  54. [54]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    I. Dorsner, J. Drobnak, S. Fajfer, J.F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, JHEP 11 (2011) 002 [arXiv:1107.5393] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton stability, dark matter and light color octet scalars in adjoint SU(5) unification, Phys. Rev. D 78 (2008) 015013 [arXiv:0803.4156] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Super-Kamiokande collaboration, H. Nishino et al., Search for nucleon decay into charged anti-lepton plus meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Miura, Search for nucleon decays in Super-Kamiokande, PoS (ICHEP 2010) 408 [INSPIRE].
  61. [61]
    Super-Kamiokande collaboration, K. Kobayashi et al., Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande I, Phys. Rev. D 72 (2005) 052007 [hep-ex/0502026] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Super-Kamiokande collaboration, C. Regis et al., Search for proton decay via pμ + K 0 in Super-Kamiokande I, II and III, Phys. Rev. D 86 (2012) 012006 [arXiv:1205.6538] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Super-Kamiokande collaboration, K. Abe et al., A search for nucleon decay via \( n\to \overline{\nu}{\pi^0} \) and \( p\to \overline{\nu}{\pi^{+}} \) in Super-Kamiokande, arXiv:1305.4391 [INSPIRE].
  64. [64]
    RBC-UKQCD collaboration, Y. Aoki et al., Proton lifetime bounds from chirally symmetric lattice QCD, Phys. Rev. D 78 (2008) 054505 [arXiv:0806.1031] [INSPIRE].ADSGoogle Scholar
  65. [65]
    P. Fileviez Perez, Fermion mixings versus D = 6 proton decay, Phys. Lett. B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    I. Dorsner and P. Fileviez Perez, Could we rotate proton decay away?, Phys. Lett. B 606 (2005) 367 [hep-ph/0409190] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    I. Dorsner and P. Fileviez Perez, How long could we live?, Phys. Lett. B 625 (2005) 88 [hep-ph/0410198] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. De Rujula, H. Georgi and S. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD, Phys. Rev. D 86 (2012) 074503 [arXiv:1207.0994] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, B → D (∗)τ ντ decays in two-Higgs-doublet models, J. Phys. Conf. Ser. 447 (2013) 012058 [arXiv:1302.5992] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    LHCb collaboration, First observation of the decay \( B_c^{+}\to {J \left/ {{\psi {\pi^{+}}{\pi^{-}}{\pi^{+}}}} \right.} \) , Phys. Rev. Lett. 108 (2012) 251802 [arXiv:1204.0079] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    E.N. Glover et al., Top quark physics at colliders, Acta Phys. Polon. B 35 (2004) 2671 [hep-ph/0410110] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  75. [75]
    J. Korner and G. Schuler, Exclusive semileptonic heavy meson decays including lepton mass effects, Z. Phys. C 46 (1990) 93 [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Korner and G. Schuler, Exclusive semileptonic decays of bottom mesons in the spectator quark model, Z. Phys. C 38 (1988) 511 [Erratum ibid. C 41 (1989) 690] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Belle collaboration, W. Dungel et al., Measurement of the form factors of the decay B 0D ∗−+ν and determination of the CKM matrix element |V cb|, Phys. Rev. D 82 (2010) 112007 [arXiv:1010.5620] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ilja Doršner
    • 1
  • Svjetlana Fajfer
    • 2
    • 3
  • Nejc Košnik
    • 3
    • 4
  • Ivan Nišandžić
    • 3
  1. 1.Department of PhysicsUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Department of Physics, University of Ljubljana,LjubljanaSlovenia
  3. 3.J. Stefan InstituteLjubljanaSlovenia
  4. 4.Institute of Metals and TechnologyLjubljanaSlovenia

Personalised recommendations