Journal of High Energy Physics

, 2013:81 | Cite as

Yangian symmetry of smooth Wilson loops in \( \mathcal{N}=4 \) super Yang-Mills theory

  • Dennis Müller
  • Hagen Münkler
  • Jan Plefka
  • Jonas Pollok
  • Konstantin Zarembo
Article

Abstract

We show that appropriately supersymmetrized smooth Maldacena-Wilson loop operators in \( \mathcal{N}=4 \) super Yang-Mills theory are invariant under a Yangian symmetry Y [\( psu \)(2, 2|4)] built upon the manifest superconformal symmetry algebra of the theory. The existence of this hidden symmetry is demonstrated at the one-loop order in the weak coupling limit as well as at leading order in the strong coupling limit employing the classical integrability of the dual AdS5 × S5 string description. The hidden symmetry generators consist of a canonical non-local second order variational derivative piece acting on the superpath, along with a novel local path dependent contribution. We match the functional form of these Yangian symmetry generators at weak and strong coupling and find evidence for an interpolating function. Our findings represent the smooth counterpart to the Yangian invariance of scattering superamplitudes dual to light-like polygonal super Wilson loops in the \( \mathcal{N}=4 \) super Yang-Mills theory.

Keywords

Wilson ’t Hooft and Polyakov loops AdS-CFT Correspondence Conformal and W Symmetry 

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III. Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    O. Foda, N = 4 SYM structure constants as determinants, JHEP 03 (2012) 096 [arXiv:1111.4663] [INSPIRE].ADSGoogle Scholar
  6. [6]
    V. Kazakov and E. Sobko, Three-point correlators of twist-2 operators in N = 4 SYM at Born approximation, JHEP 06 (2013) 061 [arXiv:1212.6563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    O. Foda, Y. Jiang, I. Kostov and D. Serban, A tree-level 3-point function in the SU(3)-sector of planar N = 4 SYM, arXiv:1302.3539 [INSPIRE].
  8. [8]
    J.M. Drummond, Review of AdS/CFT integrability, chapter V.2: dual superconformal symmetry, Lett. Math. Phys. 99 (2012) 481 [arXiv:1012.4002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  9. [9]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-loop superconformal and Yangian symmetries of scattering amplitudes in N = 4 super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Sever and P. Vieira, Symmetries of the N = 4 SYM S-matrix, arXiv:0908.2437 [INSPIRE].
  14. [14]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    L. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Belitsky, Conformal anomaly of super Wilson loop, Nucl. Phys. B 862 (2012) 430 [arXiv:1201.6073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    N. Beisert, S. He, B.U. Schwab and C. Vergu, Null polygonal Wilson loops in full N = 4 superspace, J. Phys. A 45 (2012) 265402 [arXiv:1203.1443] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix at finite coupling, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, arXiv:1306.2058 [INSPIRE].
  24. [24]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  25. [25]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  26. [26]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys. B 581 (2000) 116 [hep-th/0002106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A.M. Polyakov and V.S. Rychkov, Loop dynamics and AdS/CFT correspondence, Nucl. Phys. B 594 (2001) 272 [hep-th/0005173] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A.M. Polyakov, unpublished.Google Scholar
  30. [30]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  32. [32]
    A.M. Polyakov, String representations and hidden symmetries for gauge fields, Phys. Lett. B 82 (1979) 247 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Y. Makeenko and A.A. Migdal, Exact equation for the loop average in multicolor QCD, Phys. Lett. B 88 (1979) 135 [Erratum ibid. B 89 (1980) 437] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Makeenko and A.A. Migdal, Quantum chromodynamics as dynamics of loops, Nucl. Phys. B 188 (1981) 269 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    N. Drukker, A new type of loop equations, JHEP 11 (1999) 006 [hep-th/9908113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    N. MacKay, Introduction to Yangian symmetry in integrable field theory, Int. J. Mod. Phys. A 20 (2005) 7189 [hep-th/0409183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    V.G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [Dokl. Akad. Nauk Ser. Fiz. 283 (1985) 1060] [INSPIRE].Google Scholar
  40. [40]
    V.G. Drinfel’d, Quantum groups, J. Sov. Math. 41 (1988) 898 [Zap. Nauchn. Semin. 155 (1986) 18] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, in Quantum theory and symmetries, P.C. Argyres et al. eds., World Scientific, Singapore (2004) [hep-th/0401243] [INSPIRE].Google Scholar
  42. [42]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  43. [43]
    G.W. Semenoff and K. Zarembo, Wilson loops in SYM theory: from weak to strong coupling, Nucl. Phys. Proc. Suppl. 108 (2002) 106 [hep-th/0202156] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  44. [44]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, arXiv:1308.3494 [INSPIRE].
  46. [46]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    R. Ishizeki, M. Kruczenski and S. Ziama, Notes on Euclidean Wilson loops and Riemann theta functions, Phys. Rev. D 85 (2012) 106004 [arXiv:1104.3567] [INSPIRE].ADSGoogle Scholar
  51. [51]
    L.F. Alday, J.M. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetGoogle Scholar
  52. [52]
    A.V. Belitsky, S.E. Derkachov, G. Korchemsky and A. Manashov, Superconformal operators in N = 4 super Yang-Mills theory, Phys. Rev. D 70 (2004) 045021 [hep-th/0311104] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    P.S. Howe and P.C. West, Superconformal invariants and extended supersymmetry, Phys. Lett. B 400 (1997) 307 [hep-th/9611075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Dennis Müller
    • 1
  • Hagen Münkler
    • 1
  • Jan Plefka
    • 1
  • Jonas Pollok
    • 1
  • Konstantin Zarembo
    • 2
    • 3
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.NorditaKTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations