Advertisement

Journal of High Energy Physics

, 2013:53 | Cite as

Non-decoupling MSSM Higgs sector and light superpartners

  • Tao Han
  • Tong Li
  • Shufang Su
  • Lian-Tao Wang
Article

Abstract

In the “non-decoupling” region of the Higgs sector in MSSM, the heavier CP-even Higgs boson (H 0) is Standard-Model-like and close to the charged Higgs bosons (H ±) in mass, while other neutral Higgs bosons (h 0 , A 0) are lighter and near the Z mass. This scenario is consistent with the current Higgs search limits, although the improved sensitivity for a light charged Higgs boson search tH + b may result in certain degree of tension. We demonstrate that it can pass the stringent flavor constraints, provided there are other light SUSY particles to contribute in the loop induced processes. In turn, the non-decoupling Higgs sector implies the existence of light (left-handed) stop, sbottom and Wino-like gauginos, with mass all below 250 GeV. These light super-partners can still escape the current SUSY searches at the LHC. Dedicated searches for soft decay products should be devised for the LHC experiments to improve the searching sensitivity. The ILC would be able to cover the full spectrum region. The solutions for the viable SUSY parameters result from subtle cancellations and are often missed by the generic multiple dimensional scans, highlighting the importance of theoretical guidance in search for such special cases.

Keywords

Supersymmetry Phenomenology Hadronic Colliders 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.F. Gunion, H. E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  4. [4]
    J. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H.E. Haber, Nonminimal Higgs sectors: the decoupling limit and its phenomenological implications, hep-ph/9501320 [INSPIRE].
  18. [18]
    H.E. Haber, Challenges for nonminimal Higgs searches at future colliders, hep-ph/9505240 [INSPIRE].
  19. [19]
    N.D. Christensen, T. Han and T. Li, Pair production of MSSM Higgs bosons in the non-decoupling region at the LHC, Phys. Rev. D 86 (2012) 074003 [arXiv:1206.5816] [INSPIRE].ADSGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for charged Higgs bosons in the τ + jets final state with pp collision data recorded at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).
  21. [21]
    M. Misiak et al., Estimate of B(\( \overline{B} \)X(s)γ) at O(\( \alpha_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Becher and M. Neubert, Analysis of Br(\( \overline{B} \)X(sγ)) at NNLO with a cut on photon energy, Phys. Rev. Lett. 98 (2007) 022003 [hep-ph/0610067] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, arXiv:1303.3040 [INSPIRE].
  26. [26]
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry without prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Bechtle et al., MSSM interpretations of the LHC discovery: light or heavy Higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Ke et al., Revisit to non-decoupling MSSM, Phys. Lett. B 723 (2013) 113 [arXiv:1211.2427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J. Ke et al., What if bb does not dominate the decay of the Higgs-like boson?, arXiv:1212.6311 [INSPIRE].
  32. [32]
    M. Carena, S. Heinemeyer, O. St al, C.E.M. Wagner and G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE]ADSCrossRefGoogle Scholar
  33. [33]
    B. Grinstein and M.B. Wise, Weak radiative B meson decay as a probe of the Higgs sector, Phys. Lett. B 201 (1988) 274 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W.-S. Hou and R. Willey, Effects of charged Higgs bosons on the processes bsγ, bsg and bsℓ + , Phys. Lett. B 202 (1988) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    V.D. Barger, J. Hewett and R. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX sγ: standard model and two-Higgs doublet model, Nuclear Physics B 527 (1998) 21 [hep-ph/9710335].ADSGoogle Scholar
  37. [37]
    S. Bertolini, F. Borzumati and A. Masiero, Supersymmetric enhancement of noncharmed B decays, Nucl. Phys. B 294 (1987) 321.ADSCrossRefGoogle Scholar
  38. [38]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591.ADSCrossRefGoogle Scholar
  39. [39]
    V. Barger, M.S. Berger and R.J.N. Phillips, Implications of bsγ decay measurements in testing the Higgs sector of the minimum supersymmetric standard model, Phys. Rev. Lett. 70 (1993) 1368 [hep-ph/9211260] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Barbieri and G.F. Giudice, bsγ decay and supersymmetry, Phys. Lett. B 309 (1993) 86 [hep-ph/9303270] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes k(L) → \( \overline{\mu}\overline{\mu } \) , K +pi + neutrino anti-neutrino and K 0\( \overline{K} \) 0, Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two-loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    P. Bechtle et al., HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Bechtle et al., Recent developments in HiggsBounds and a preview of HiggsSignals, PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].
  51. [51]
    R. Barate et al., Search for the standard model Higgs Boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].Google Scholar
  52. [52]
    CDF collaboration, T. Aaltonen et al., Search for charged Higgs bosons in decays of top quarks in p \( \overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).
  55. [55]
    ATLAS collaboration, Update of the HWW (∗)eνμν analysis with 13 fb −1 of \( \sqrt{s} \) = 8 TeV data collected with the ATLAS detector, ATLAS-CONF-2012-158 (2012).
  56. [56]
    ATLAS collaboration, Study of the channel HZ Z + q \( \overline{q} \) in the mass range 120–180 GeV with the ATLAS detector at \( \sqrt{s} \) = 7 TeV, ATLAS-CONF-2012-163 (2012).
  57. [57]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  58. [58]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042 (2012).
  59. [59]
    CMS collaboration, Updated results on the new boson discovered in the search for the standard model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-12-041 (2012).
  60. [60]
    ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).
  61. [61]
    ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2012-135 (2012).
  62. [62]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).
  63. [63]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).
  64. [64]
    ATLAS collaboration, Search for the standard model Higgs boson in Hττ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  65. [65]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons in \( \sqrt{s} \) = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  66. [66]
    CMS collaboration, Search for Neutral MSSM Higgs bosons in the μ + μ final state with the CMS experiment in pp collisions at \( \sqrt{s} \) = 7 TeV, CMS-PAS-HIG-12-011 (2012).
  67. [67]
    CMS collaboration, MSSM Higgs production in association with b quarksAll hadronic, CMS-PAS-HIG-12-026 (2012).
  68. [68]
    CMS collaboration, MSSM Higgs production in association with b-quarksSemi leptonic, CMS-PAS-HIG-12-027 (2012).
  69. [69]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  70. [70]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  71. [71]
    ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).
  72. [72]
    ATLAS collaboration, Search for a standard model Higgs boson in Hμμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).
  73. [73]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  74. [74]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  75. [75]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  76. [76]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2012).
  77. [77]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  78. [78]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  79. [79]
    CMS collaboration, Search for the standard-model Higgs boson decaying to τ pairs in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-004 (2013).
  80. [80]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for LHCp 2013, CMS-PAS-HIG-13-012 (1546801).
  81. [81]
    CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).
  82. [82]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric heavy Higgs bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SUSY : reopening the low tan β regime and heavy Higgs searches, arXiv:1304.1787 [INSPIRE].
  84. [84]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  87. [87]
    LHCb collaboration, First evidence for the decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B} \)X(smatrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B} \)D(∗) τ \( \overline{\nu} \) τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  91. [91]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    Belle collaboration, I. Adachi et al., Measurement of B τ \( \overline{\nu} \) τ with a hadronic tagging method using the full data sample of Belle, Phys. Rev. Lett. 110 (2013) 131801 [arXiv:1208.4678] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    U. Eitschberger and F. Meier, LHCb: LHCb results on B meson mixing, poster at Rencontres de Moriond EW, March 2–9, La Thuile, Aosta, Italy (2013), CERN-Poster-2013-258.
  95. [95]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions using 13.0 fb −1 of ATLAS data, ATLAS-CONF-2012-166 (2012).
  96. [96]
    ATLAS collaboration, Search for a supersymmetric top-quark partner in final states with two leptons in \( \sqrt{s} \) = 8 TeV pp collisions using 13 fb −1 of ATLAS data, ATLAS-CONF-2012-167 (2012).
  97. [97]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  98. [98]
    CMS collaboration, Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \( \sqrt{s} \) = 8 TeV, CMS-PAS-SUS-12-023 (1494074).
  99. [99]
  100. [100]
    K. Krizka, A. Kumar and D.E. Morrissey, Very light scalar top quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].ADSGoogle Scholar
  101. [101]
    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013), no. 3 035006 [arXiv:1211.4981] [INSPIRE].
  102. [102]
    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  104. [104]
    CMS collaboraiton, Search for direct EWK production of SUSY particles in multilepton modes with 8TeV data, CMS-PAS-SUS-12-022 (2012).
  105. [105]
    ATLAS collaboration, Search for direct sbottom production in event with two b-jets using 12.8 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-165 (2012).
  106. [106]
    CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3, or at least 4 b-quark jets in 8 TeV pp collisions using the variable α T , CMS-PAS-SUS-12-028 (1494483).
  107. [107]
    J.E. Brau et al., The physics case for an e + e linear collider, arXiv:1210.0202 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Department of Physics and AstronomyUniversity of PittsburghPittsburghU.S.A.
  2. 2.Center for High Energy PhysicsTsinghua UniversityBeijingChina
  3. 3.Korea Institute for Advanced Study (KIAS)SeoulKorea
  4. 4.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsMonash UniversityMelbourneAustralia
  5. 5.Department of PhysicsUniversity of ArizonaTucsonU.S.A.
  6. 6.Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations