Skip to main content
Log in

Dynamical entanglement entropy with angular momentum and U(1) charge

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider time-dependent entanglement entropy (EE) for a 1+1 dimensional CFT in the presence of angular momentum and U(1) charge. The EE saturates, irrespective of the initial state, to the grand canonical entropy after a time large compared with the length of the entangling interval. We reproduce the CFT results from an AdS dual consisting of a spinning BTZ black hole and a flat U(1) connection. The apparent discrepancy that the holographic EE does not a priori depend on the U(1) charge while the CFT EE does, is resolved by the charge-dependent shift between the bulk and boundary stress tensors. We show that for small entangling intervals, the entanglement entropy obeys the first law of thermodynamics, as conjectured recently. The saturation of the EE in the field theory is shown to follow from a version of quantum ergodicity; the derivation indicates that it should hold for conformal as well as massive theories in any number of dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended systems, J. Phys. A 42 (2009) 500301.

    MathSciNet  Google Scholar 

  2. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  3. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  Google Scholar 

  4. J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 04 (2005) P04010 [cond-mat/0503393] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].

    ADS  Google Scholar 

  9. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  11. H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, arXiv:1305.7244 [INSPIRE].

  12. A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

    Article  ADS  Google Scholar 

  15. P. Calabrese, F.H.L Essler and M. Fagotti, Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators, J. Stat. Mech. 07 (2012) P07016 [arXiv:1204.3911].

  16. G. Mandal and T. Morita, Quantum quench in matrix models: dynamical phase transitions, selective equilibration and the generalized Gibbs ensemble, arXiv:1302.0859 [INSPIRE].

  17. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. Y. Takahashi and H. Umezawa, Thermo field dynamics, Collect. Phenom. 2 (1975) 55.

    MathSciNet  Google Scholar 

  19. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  20. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  21. J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].

    Article  ADS  Google Scholar 

  22. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Cadoni and M. Melis, Holographic entanglement entropy of the BTZ black hole, Found. Phys. 40 (2010) 638 [arXiv:0907.1559] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

  29. P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  32. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].

    ADS  Google Scholar 

  34. D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, arXiv:1305.3291 [INSPIRE].

  36. M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Kraus and T. Ugajin, An entropy formula for higher spin black holes via conical singularities, JHEP 05 (2013) 160 [arXiv:1302.1583] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Mandal, Dynamical phase transitions, quantum quench and equilibration in low dimensional field theories and holography, talk at the Seventh Crete regional meeting in string theory, http://hep.physics.uoc.gr/mideast7/program.html, Kolyambari Crete Greece June 18 2013.

  39. J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, arXiv:1306.4347 [INSPIRE].

  40. M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J.-S. Caux and F.H. Essler, Time evolution of local observables after quenching to an integrable model, Phys. Rev. Lett. 110 (2013) 257203 [arXiv:1301.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C.P. Herzog and M. Spillane, Tracing through scalar entanglement, Phys. Rev. D 87 (2013) 025012 [arXiv:1209.6368] [INSPIRE].

    ADS  Google Scholar 

  43. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Mandal.

Additional information

ArXiv ePrint: 1306.4974

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputa, P., Mandal, G. & Sinha, R. Dynamical entanglement entropy with angular momentum and U(1) charge. J. High Energ. Phys. 2013, 52 (2013). https://doi.org/10.1007/JHEP11(2013)052

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)052

Keywords

Navigation