Advertisement

Journal of High Energy Physics

, 2013:43 | Cite as

A framework for Higgs characterisation

  • P. Artoisenet
  • P. de Aquino
  • F. Demartin
  • R. Frederix
  • S. Frixione
  • F. Maltoni
  • M. K. Mandal
  • P. Mathews
  • K. Mawatari
  • V. Ravindran
  • S. Seth
  • P. Torrielli
  • M. Zaro
Open Access
Article

Abstract

We introduce a framework, based on an effective field theory approach, that allows one to perform characterisation studies of the boson recently discovered at the LHC, for all the relevant channels and in a consistent, systematic and accurate way. The production and decay of such a boson with various spin and parity assignments can be simulated by means of multi-parton, tree-level matrix elements and of next-to-leading order QCD calculations, both matched with parton showers. Several sample applications are presented which show, in particular, that beyond-leading-order effects in QCD have nontrivial phenomenological implications.

Keywords

Phenomenological Models Monte Carlo Simulations 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2013-009 (2013).
  4. [4]
    ATLAS collaboration, Search for a Standard Model Higgs boson in Hμμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).
  5. [5]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb 1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  6. [6]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb 1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  7. [7]
    CMS collaboration, Evidence for a particle decaying to W + Win the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-HIG-13-003 (2013).
  8. [8]
    CMS collaboration, Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-HIG-13-004 (2013).
  9. [9]
    CMS collaboration, Search for the standard model Higgs boson in the Z boson plus a photon channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-HIG-13-006 (2013).
  10. [10]
    CMS collaboration, Search for SM Higgs in WH to WWW to 3l 3ν, CMS-HIG-13-009 (2013).
  11. [11]
    S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    S. Choi, M. Muhlleitner and P. Zerwas, Theoretical Basis of Higgs-Spin Analysis in Hγγ and Zγ Decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Spherical Parametrization of the Higgs Boson Candidate, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson production and decay, Phys. Lett. B 318 (1993) 155 [hep-ph/9308347] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSGoogle Scholar
  21. [21]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D.E. Morrissey, T. Plehn and T.M. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ~ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSGoogle Scholar
  28. [28]
    I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Passarino, NLO Inspired Effective Lagrangians for Higgs Physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  36. [36]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs Precision (Higgcision) Era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Falkowski, F. Riva and A. Urbano, Higgs At Last, arXiv:1303.1812 [INSPIRE].
  38. [38]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSGoogle Scholar
  40. [40]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSGoogle Scholar
  41. [41]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSGoogle Scholar
  42. [42]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs quantum numbers in weak boson fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSGoogle Scholar
  45. [45]
    N. Christensen, C. Degrande, C. Duhr and B. Fuks, Feynrules model database, http://feynrules.irmp.ucl.ac.be.
  46. [46]
    G.C. Branco, L. Lavour and J.P. Silva, CP violation, Oxford University Press, Oxford U.K. (1999).Google Scholar
  47. [47]
    K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSGoogle Scholar
  48. [48]
    W.-Y. Keung, I. Low and J. Shu, Landau-Yang Theorem and Decays of a ZBoson into Two Z Bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [INSPIRE].ADSGoogle Scholar
  49. [49]
    L. Landau, On the angular momentum of a two-photon system, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207.Google Scholar
  50. [50]
    C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSMATHGoogle Scholar
  51. [51]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, DistinguishingHiggsspin hypotheses using γγ and W W * decays, Eur. Phys. J. C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].ADSGoogle Scholar
  55. [55]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  56. [56]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSGoogle Scholar
  59. [59]
    G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via hVF decays, arXiv:1305.0663 [INSPIRE].
  60. [60]
    B. Grinstein, C.W. Murphy and D. Pirtskhalava, Searching for new physics in the three-body decays of the Higgs-like particle, JHEP 10 (2013) 077 [arXiv:1305.6938] [INSPIRE].ADSGoogle Scholar
  61. [61]
    G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHGoogle Scholar
  65. [65]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: Wb \( \overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  69. [69]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSGoogle Scholar
  72. [72]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSGoogle Scholar
  73. [73]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].MathSciNetADSGoogle Scholar
  74. [74]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSGoogle Scholar
  75. [75]
    P. Draggiotis, M. Garzelli, C. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 1010 (2010) 097] [arXiv:0910.3130] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the R ξ gauge and in the Unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [INSPIRE].ADSGoogle Scholar
  78. [78]
    H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman Rules for the Rational Part of the Standard Model One-loop Amplitudes in thet Hooft-Veltman γ5 Scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].ADSGoogle Scholar
  79. [79]
    H.-S. Shao and Y.-J. Zhang, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, JHEP 06 (2012) 112 [arXiv:1205.1273] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSGoogle Scholar
  81. [81]
    R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [INSPIRE].ADSGoogle Scholar
  82. [82]
    P. Mathews, V. Ravindran and K. Sridhar, NLO-QCD corrections to dilepton production in the Randall-Sundrum model, JHEP 10 (2005) 031 [hep-ph/0506158] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders, Phys. Lett. B 672 (2009) 45 [arXiv:0811.1670] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Direct photon pair production at the LHC to order α s in TeV scale gravity models, Nucl. Phys. B 818 (2009) 28 [arXiv:0902.4894] [INSPIRE].ADSGoogle Scholar
  85. [85]
    N. Agarwal, V. Ravindran, V. Tiwari and A. Tripathi, Z boson pair production at the LHC to O(α s) in TeV scale gravity models, Nucl. Phys. B 830 (2010) 248 [arXiv:0909.2651] [INSPIRE].ADSGoogle Scholar
  86. [86]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, Next-to-leading order QCD corrections to the Z boson pair production at the LHC in Randall Sundrum model, Phys. Lett. B 686 (2010) 244 [arXiv:0910.1551] [INSPIRE].ADSGoogle Scholar
  87. [87]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, Next-to-leading order QCD corrections to W + W production at the LHC in Randall Sundrum model, Phys. Lett. B 690 (2010) 390 [arXiv:1003.5445] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, W + W production in Large extra dimension model at next-to-leading order in QCD at the LHC, Phys. Rev. D 82 (2010) 036001 [arXiv:1003.5450] [INSPIRE].ADSGoogle Scholar
  89. [89]
    R. Frederix et al., Diphoton production in the ADD model to NLO + parton shower accuracy at the LHC, JHEP 12 (2012) 102 [arXiv:1209.6527] [INSPIRE].ADSGoogle Scholar
  90. [90]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSGoogle Scholar
  91. [91]
    C. Englert, D. Goncalves, G. Nail and M. Spannowsky, The shape of spins, Phys. Rev. D 88 (2013) 013016 [arXiv:1304.0033] [INSPIRE].ADSGoogle Scholar
  92. [92]
    R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].ADSGoogle Scholar
  93. [93]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSGoogle Scholar
  94. [94]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar
  95. [95]
    CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  97. [97]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSGoogle Scholar
  98. [98]
    S. Choi, D. Miller, M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSGoogle Scholar
  99. [99]
    D0 collaboration, V.M. Abazov et al., Search for Randall-Sundrum gravitons in the dielectron and diphoton final states with 5.4 fb −1 of data from pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 104 (2010) 241802 [arXiv:1004.1826] [INSPIRE].ADSGoogle Scholar
  100. [100]
    CDF collaboration, Search for Randall-Sundrum Gravitons in the Diphoton Channel at CDF, Phys. Rev. D 83 (2011) 011102 [arXiv:1012.2795] [INSPIRE].Google Scholar
  101. [101]
    CDF collaboration, Search for New Dielectron Resonances and Randall-Sundrum Gravitons at the Collider Detector at Fermilab, Phys. Rev. Lett. 107 (2011) 051801 [arXiv:1103.4650] [INSPIRE].Google Scholar
  102. [102]
    J. Ellis, V. Sanz and T. You, Prima Facie Evidence against Spin-Two Higgs Impostors, Phys. Lett. B 726 (2013) 244 [arXiv:1211.3068] [INSPIRE].ADSGoogle Scholar
  103. [103]
    J. Ellis, V. Sanz and T. You, Associated Production Evidence against Higgs Impostors and Anomalous Couplings, Eur. Phys. J. C 73 (2013) 2507 [arXiv:1303.0208] [INSPIRE].ADSGoogle Scholar
  104. [104]
    P. Mathews, V. Ravindran, K. Sridhar and W. van Neerven, Next-to-leading order QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity, Nucl. Phys. B 713 (2005) 333 [hep-ph/0411018] [INSPIRE].ADSGoogle Scholar
  105. [105]
    S. Karg, M. Krämer, Q. Li and D. Zeppenfeld, NLO QCD corrections to graviton production at hadron colliders, Phys. Rev. D 81 (2010) 094036 [arXiv:0911.5095] [INSPIRE].ADSGoogle Scholar
  106. [106]
    E.A. Mirabelli, M. Perelstein and M.E. Peskin, Collider signatures of new large space dimensions, Phys. Rev. Lett. 82 (1999) 2236 [hep-ph/9811337] [INSPIRE].ADSGoogle Scholar
  107. [107]
    P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].ADSGoogle Scholar
  108. [108]
    K. Kondo, Dynamical Likelihood Method for Reconstruction of Events With Missing Momentum. 1: Method and Toy Models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].ADSGoogle Scholar
  109. [109]
    J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].ADSGoogle Scholar
  110. [110]
    D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  111. [111]
    A. Alves, Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE].ADSGoogle Scholar
  112. [112]
    P. Avery et al., Precision studies of the Higgs boson decay channel HZZ → 4l with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].ADSGoogle Scholar
  113. [113]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  114. [114]
    P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling tth via the matrix element method, arXiv:1304.6414 [INSPIRE].
  115. [115]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSGoogle Scholar
  116. [116]
    J.P. Ralston, The Need to Fairly Confront Spin-1 for the New Higgs-like Particle, arXiv:1211.2288 [INSPIRE].
  117. [117]
    B.A. Kniehl and J.H. Kuhn, QCD Corrections to the Z Decay Rate, Nucl. Phys. B 329 (1990) 547 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • P. Artoisenet
    • 1
  • P. de Aquino
    • 2
  • F. Demartin
    • 3
  • R. Frederix
    • 4
  • S. Frixione
    • 4
    • 5
  • F. Maltoni
    • 3
  • M. K. Mandal
    • 6
  • P. Mathews
    • 7
  • K. Mawatari
    • 2
  • V. Ravindran
    • 8
  • S. Seth
    • 7
  • P. Torrielli
    • 9
  • M. Zaro
    • 3
  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands
  2. 2.Theoretische Natuurkunde and IIHE/ELEMVrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.PH Department, TH Unit, CERNGeneva 23Switzerland
  5. 5.ITPP, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  6. 6.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteAllahabadIndia
  7. 7.Saha Institute of Nuclear PhysicsKolkataIndia
  8. 8.Institute of Mathematical SciencesChennaiIndia
  9. 9.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland

Personalised recommendations