Advertisement

Journal of High Energy Physics

, 2013:37 | Cite as

Chern Simons duality with a fundamental boson and fermion

  • Sachin Jain
  • Shiraz Minwalla
  • Shuichi Yokoyama
Article

Abstract

We compute the thermal free energy for all renormalizable Chern Simon theories coupled to a single fundamental bosonic and fermionic field in the ’t Hooft large N limit. We use our results to conjecture a strong weak coupling duality invariance for this class of theories. Our conjectured duality reduces to Giveon Kutasov duality when restricted to \( \mathcal{N}=2 \) supersymmetric theories and to an earlier conjectured bosonization duality in an appropriate decoupling limit. Consequently the bosonization duality may be regarded as a deformation of Giveon Kutasov duality, suggesting that it is true even at large but finite N.

Keywords

Duality in Gauge Field Theories Chern-Simons Theories 1/N Expansion Sigma Models 

References

  1. [1]
    J. Fröhlich and T. Kerler, Universality in quantum Hall systems, Nucl. Phys. B 354 (1991) 369 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Fröhlich and A. Zee, Large scale physics of the quantum Hall fluid, Nucl. Phys. B 364 (1991) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Giombi et al., Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-Matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons theories with vector matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S. Yokoyama, Chern-Simons-Fermion Vector Model with Chemical Potential, JHEP 01 (2013) 052 [arXiv:1210.4109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large-N Chern-Simons-Matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Gur-Ari and R. Yacoby, Correlators of large-N fermionic Chern-Simons vector models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia et al., Phases of large-N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Takimi, Duality and Higher Temperature Phases of Large-N Chern-Simons Matter Theories on S 2 × S 1, arXiv:1304.3725 [INSPIRE].
  17. [17]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    R.D. Pisarski and S. Rao, Topologically Massive Chromodynamics in the Perturbative Regime, Phys. Rev. D 32 (1985) 2081 [INSPIRE].ADSGoogle Scholar
  19. [19]
    W. Chen, G.W. Semenoff and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory, Phys. Rev. D 46 (1992) 5521 [hep-th/9209005] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Sachin Jain
    • 1
  • Shiraz Minwalla
    • 1
  • Shuichi Yokoyama
    • 1
  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations