Journal of High Energy Physics

, 2013:36

New results on νμντ appearance with the OPERA experiment in the CNGS beam

  • The OPERA collaboration
  • N. Agafonova
  • A. Aleksandrov
  • A. Anokhina
  • S. Aoki
  • A. Ariga
  • T. Ariga
  • T. Asada
  • D. Autiero
  • A. Badertscher
  • A. Ben Dhahbi
  • D. Bender
  • A. Bertolin
  • C. Bozza
  • R. Brugnera
  • G. Brunetti
  • B. Büttner
  • S. Buontempo
  • L. Chaussard
  • M. Chernyavskiy
  • V. Chiarella
  • A. Chukanov
  • L. Consiglio
  • N. D’Ambrosio
  • P. Del Amo Sanchez
  • G. De Lellis
  • M. De Serio
  • A. Di Crescenzo
  • D. Di Ferdinando
  • N. Di Marco
  • S. Dmitrievski
  • M. Dracos
  • D. Duchesneau
  • S. Dusini
  • J. Ebert
  • A. Ereditato
  • J. Favier
  • T. Ferber
  • R. A. Fini
  • T. Fukuda
  • A. Garfagnini
  • G. Giacomelli
  • C. Goellnitz
  • J. Goldberg
  • Y. Gornushkin
  • G. Grella
  • F. Grianti
  • A. M Guler
  • C. Gustavino
  • C. Hagner
  • K. Hakamata
  • T. Hara
  • T. Hayakawa
  • M. Hierholzer
  • A. Hollnagel
  • B. Hosseini
  • H. Ishida
  • K. Ishiguro
  • M. Ishikawa
  • K. Jakovcic
  • C. Jollet
  • C. Kamiscioglu
  • M. Kamiscioglu
  • T. Katsuragawa
  • H. Kawahara
  • J. Kawada
  • J. H. Kim
  • S. H. Kim
  • M. Kimura
  • N. Kitagawa
  • B. Klicek
  • K. Kodama
  • M. Komatsu
  • U. Kose
  • I. Kreslo
  • A. Lauria
  • J. Lenkeit
  • A. Ljubicic
  • A. Longhin
  • P. Loverre
  • A. Malgin
  • G. Mandrioli
  • J. Marteau
  • T. Matsuo
  • V. Matveev
  • N. Mauri
  • E. Medinaceli
  • A. Meregaglia
  • P. Migliozzi
  • S. Mikado
  • A. Minotti
  • M. Miyanishi
  • E. Miyashita
  • P. Monacelli
  • M. C. Montesi
  • K. Morishima
  • M. T. Muciaccia
  • N. Naganawa
  • T. Naka
  • M. Nakamura
  • T. Nakano
  • Y. Nakatsuka
  • K. Niwa
  • S. Ogawa
  • N. Okateva
  • A. Olshevsky
  • T. Omura
  • K. Ozaki
  • A. Paoloni
  • B. D. Park
  • I. G. Park
  • A. Pastore
  • L. Patrizii
  • E. Pennacchio
  • H. Pessard
  • C. Pistillo
  • D. Podgrudkov
  • N. Polukhina
  • M. Pozzato
  • K. Pretzl
  • F. Pupilli
  • R. Rescigno
  • M. Roda
  • T. Roganova
  • H. Rokujo
  • G. Rosa
  • I. Rostovtseva
  • A. Rubbia
  • A. Russo
  • O. Ryazhskaya
  • O. Sato
  • Y. Sato
  • A. Schembri
  • W. Schmidt-Parzefall
  • I. Shakiryanova
  • T. Schcedrina
  • A. Sheshukov
  • H. Shibuya
  • T. Shiraishi
  • G. Shoziyoev
  • S. Simone
  • M. Sioli
  • C. Sirignano
  • G. Sirri
  • M. Spinetti
  • L. Stanco
  • N. Starkov
  • S. M. Stellacci
  • M. Stipcevic
  • T. Strauss
  • P. Strolin
  • K. Suzuki
  • S. Takahashi
  • M. Tenti
  • F. Terranova
  • V. Tioukov
  • P. Tolun
  • S. Tufanli
  • P. Vilain
  • M. Vladimirov
  • L. Votano
  • J. L. Vuilleumier
  • G. Wilquet
  • B. Wonsak
  • C. S. Yoon
  • J. Yoshida
  • M. Yoshimoto
  • Y. Zaitsev
  • S. Zemskova
  • A. Zghiche
Open Access
Article

Abstract

The OPERA neutrino experiment is designed to perform the first observation of neutrino oscillations in direct appearance mode in the νμντ channel, via the detection of the τ-leptons created in charged current ντ interactions. The detector, located in the underground Gran Sasso Laboratory, consists of an emulsion/lead target with an average mass of about 1.2 kt, complemented by electronic detectors. It is exposed to the CERN Neutrinos to Gran Sasso beam, with a baseline of 730 km and a mean energy of 17 GeV. The observation of the first ντ candidate event and the analysis of the 2008-2009 neutrino sample have been reported in previous publications. This work describes substantial improvements in the analysis and in the evaluation of the detection efficiencies and backgrounds using new simulation tools. The analysis is extended to a sub-sample of 2010 and 2011 data, resulting from an electronic detector-based pre-selection, in which an additional ντ candidate has been observed. The significance of the two events in terms of a νμντ oscillation signal is of 2.40σ.

Keywords

Oscillation Neutrino Detectors and Telescopes 

References

  1. [1]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. Pontecorvo, Inverse β processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [INSPIRE].Google Scholar
  3. [3]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Super-Kamiokande collaboration, K. Abe et al., A measurement of atmospheric neutrino flux consistent with tau neutrino appearance, Phys. Rev. Lett. 97 (2006) 171801 [hep-ex/0607059] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Super-Kamiokande collaboration, S. Fukuda et al., Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    SAGE collaboration, J. Abdurashitov et al., Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle, J. Exp. Theor. Phys. 95 (2002) 181 [astro-ph/0204245] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    GALLEX collaboration, W. Hampel et al., GALLEX solar neutrino observations: Results for GALLEX IV, Phys. Lett. B 447 (1999) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    GNO collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005) 174 [hep-ex/0504037] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Borexino collaboration, C. Arpesella et al., Direct measurement of the Be-7 solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    SNO collaboration, Q. Ahmad et al., Measurement of the rate of ν e + dp + p + e interactions produced by B-8 solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.Y. Smirnov, The MSW effect and matter effects in neutrino oscillations, Phys. Scripta T 121 (2005) 57 [hep-ph/0412391] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    KAMIOKANDE-II collaboration, K. Hirata et al., Experimental study of the atmospheric neutrino flux, Phys. Lett. B 205 (1988) 416 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    MACRO collaboration, M. Ambrosio et al., Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO, Phys. Lett. B 434 (1998) 451 [hep-ex/9807005] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Soudan-2 collaboration, W. Allison et al., Neutrino oscillation effects in Soudan-2 upward-stopping muons, Phys. Rev. D 72 (2005) 052005 [hep-ex/0507068] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K2K collaboration, M. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE].ADSGoogle Scholar
  19. [19]
    MINOS collaboration, D. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    MINOS collaboration, P. Adamson et al., Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment, Phys. Rev. Lett. 101 (2008) 221804 [arXiv:0807.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    OPERA collaboration, The emulsion technique for short, medium and long baseline ν μν τ oscillation experiments, INFN-AE-97-06 (1997).
  22. [22]
    H. Shibuya et al., Letter of intent: the OPERA emulsion detector for a long-baseline neutrino-oscillation experiment, CERN-SPSC-97-24 (1997).
  23. [23]
    OPERA collaboration, An appearance experiment to search for ν μν τ oscillations in the CNGS beam: experimental proposal, CERN-SPSC-2000-028 (2000).
  24. [24]
    OPERA collaboration, Status report on the OPERA experiment, CERN-SPSC-2001-025 (2001).
  25. [25]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Super-Kamiokande collaboration, K. Abe et al., A measurement of the appearance of atmospheric tau neutrinos by Super-Kamiokande, Phys. Rev. Lett. 110 (2013) 181802 [arXiv:1206.0328] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Esteban-Pretel, J.W. Valle and P. Huber, Can OPERA help in constraining neutrino non-standard interactions?, Phys. Lett. B 668 (2008) 197 [arXiv:0803.1790] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Blennow, D. Meloni, T. Ohlsson, F. Terranova and M. Westerberg, Non-standard interactions using the OPERA experiment, Eur. Phys. J. C 56 (2008) 529 [arXiv:0804.2744] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Elsener, The CERN neutrino beam to Gran Sasso. Conceptual technical design, CERN-98-02 (1998).
  35. [35]
    R. Bailey et al., The CERN neutrino beam to Gran Sasso (CNGS), CERN-SL-99-034-DI (1999); addendum to report No. CERN-98-0.
  36. [36]
  37. [37]
    OPERA collaboration, R. Acquafredda et al., First events from the CNGS neutrino beam detected in the OPERA experiment, New J. Phys. 8 (2006) 303 [hep-ex/0611023] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    OPERA collaboration T. Ariga et al., The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment, 2009 JINST 4 P06020 [arXiv:0903.2973] [INSPIRE].
  39. [39]
    OPERA collaboration, N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138 [arXiv:1006.1623] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    OPERA collaboration, Search for ν μν τ oscillation with the OPERA experiment in the CNGS beam, New J. Phys. 14 (2012) 033017 [arXiv:1107.2594] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    OPERA collaboration, R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018.Google Scholar
  42. [42]
    T. Adam et al., The OPERA experiment target tracker, Nucl. Instrum. Meth. A 577 (2007) 523 [physics/0701153] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    OPERA collaboration, A. Anokhina et al., Emulsion sheet doublets as interface trackers for the OPERA experiment, 2008 JINST 3 P07005 [arXiv:0804.1985] [INSPIRE].
  44. [44]
    OPERA collaboration, J. Marteau, The OPERA global readout and GPS distribution system, Nucl. Instrum. Meth. A 617 (2010) 291 [arXiv:0906.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    OPERA collaboration, N. Agafonova et al., Study of neutrino interactions with the electronic detectors of the OPERA experiment, New J. Phys. 13 (2011) 053051 [arXiv:1102.1882] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    A. Bertolin et al., OpCarac: an algorithm for the classification of the neutrino interactions recorded by the OPERA experiment, OPERA public note n. 100 (2009).
  47. [47]
    A. Chukanov et al., Neutrino interaction vertex location with the OPERA electronic detectors, OPERA public note n. 162 (2013).
  48. [48]
    A. Ferrari et al., An updated Monte Carlo calculation of the CNGS neutrino beam, CERN-AB-Note-2006-038 (2007).
  49. [49]
    K. Morishima and T. Nakano, Development of a new automatic nuclear emulsion scanning system, S-UTS, with continuous 3D tomographic image read-out, 2010 JINST 5 P04011.Google Scholar
  50. [50]
    S. Aoki et al., The fully automated emulsion analysis system, Nucl. Instrum. Meth. B 51 (1990) 466 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Nakano, Automatic analysis of nuclear emulsion, Ph.D. thesis, Nagoya University, Japan (1997).Google Scholar
  52. [52]
    G. Rosa, A. Di Bartolomeo, G. Grella and G. Romano, Automatic analysis of digitized TV images by a computer driven optical microscope, Nucl. Instrum. Meth. A 394 (1997) 357 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Armenise et al., High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes, Nucl. Instrum. Meth. A 551 (2005) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Arrabito et al., Hardware performance of a scanning system for high speed analysis of nuclear emulsions, Nucl. Instrum. Meth. A 568 (2006) 578 [physics/0604043] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Arrabito et al., Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope, 2007 JINST 2 P05004.Google Scholar
  56. [56]
    I. Kreslo et al., High-speed analysis of nuclear emulsion films with the use of dry objective lenses, 2008 JINST 3 P04006.Google Scholar
  57. [57]
    M. De Serio et al., High precision measurements with nuclear emulsions using fast automated microscopes, Nucl. Instrum. Meth. A 554 (2005) 247.ADSCrossRefGoogle Scholar
  58. [58]
    C. Bozza et al., An integrated system for large scale scanning of nuclear emulsions, Nucl. Instrum. Meth. A 703 (2013) 204.ADSCrossRefGoogle Scholar
  59. [59]
    T. Fukuda et al., The analysis of interface emulsion detector for the OPERA experiment in JAPAN scanning facility, 2010 JINST 5 P04009.Google Scholar
  60. [60]
    J. Yoshida et al., Development and utilization ofPlate Changersystem for neutrino interaction locations in OPERA emulsion target, 2013 JINST 8 P02009.Google Scholar
  61. [61]
    S. Balestra et al., A fast automatic plate changer for the analysis of nuclear emulsions, Nucl. Instrum. Meth. A 716 (2013) 96.ADSCrossRefGoogle Scholar
  62. [62]
    T. Fukuda et al. Automatic scanning of nuclear emulsions with wide angle acceptance for nuclear fragment detection, 2013 JINST 8 P01023.Google Scholar
  63. [63]
    A. Ben Dhahbi, Nuclear fragmentation study in hadron interactions within the OPERA experiment, Ph.D. thesis, Bern Univiversity, Bern, Switzerland (2013), available online.
  64. [64]
    OPERA collaboration, N. Agafonova et al., Momentum measurement by the multiple Coulomb scattering method in the OPERA lead emulsion target, New J. Phys. 14 (2012) 013026 [arXiv:1106.6211] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    A. Ariga et al., A method to search for short-lived particle decays in the OPERA experiment, OPERA public note n. 128 (2011).
  66. [66]
    CHORUS collaboration. A. Kayis-Topaksu et al., Measurement of charm production in neutrino charged-current interactions, New J. Phys. 13 (2011) 093002.Google Scholar
  67. [67]
    OPERA collaboration, N. Agafonova et al., Neutrino induced charm production in the OPERA experiment, in preparation.Google Scholar
  68. [68]
    L. Arrabito et al., Electron/pion separation with an emulsion cloud chamber by using a neural network, 2007 JINST 2 P02001 [physics/0701192] [INSPIRE].
  69. [69]
    OPERA collaboration, N. Agafonova et al., Search for ν μν e oscillations with the OPERA experiment in the CNGS beam, JHEP 07 (2013) 004 [Addendum ibid. 1307 (2013) 085] [arXiv:1303.3953] [INSPIRE].
  70. [70]
    E.L. Berger et al., The minimum invariant massA technique for heavy quark searches at collider energy, Phys. Lett. B 140 (1984) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Di Crescenzo, Search for ν μν τ oscillations in the OPERA experiment, Ph.D. thesis, Università di Napoli, Napoli, Italy (2013), available online.
  72. [72]
    A. Fassò et al. FLUKA: a multi-particle transport code, CERN-2005-10 (2005).
  73. [73]
  74. [74]
    CNGS neutrino flux calculation webpage, http://www.mi.infn.it/~psala/Icarus/cngs.html.
  75. [75]
    D. Autiero, The OPERA event generator and the data tuning of nuclear re-interactions, Nucl. Phys. Proc. Suppl. B 139 (2005) 253.ADSCrossRefGoogle Scholar
  76. [76]
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    CHORUS collaboration, A. Kayis-Topaksu et al., Associated charm production in neutrino-nucleus interactions, Eur. Phys. J. C 52 (2007) 543 [arXiv:0708.2820] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    R. Rescigno, The neutrino interaction analysis chain in OPERA, Ph.D. thesis, Università di Salerno, Salerno, Italy (2011), available online.
  80. [80]
    S.M. Stellacci, Study of the hadronic current in the neutrino interactions of the OPERA experiment, Ph.D. thesis, Università di Salerno, Salerno, Italy (2013), available online.
  81. [81]
    H. Ishida, Study of hadron backgrounds for τ-decay events in neutrino oscillation experiments. Ph.D. Thesis, Toho University, Tokyo, Japan (2013).Google Scholar
  82. [82]
    H. Ishida et al., Study of hadron interactions in an ECC brick, in preparation.Google Scholar
  83. [83]
    R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1 (1984).Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • The OPERA collaboration
  • N. Agafonova
    • 1
  • A. Aleksandrov
    • 2
  • A. Anokhina
    • 3
  • S. Aoki
    • 4
  • A. Ariga
    • 5
  • T. Ariga
    • 5
  • T. Asada
    • 24
  • D. Autiero
    • 6
  • A. Badertscher
    • 7
  • A. Ben Dhahbi
    • 5
  • D. Bender
    • 26
  • A. Bertolin
    • 8
  • C. Bozza
    • 9
  • R. Brugnera
    • 8
    • 10
  • G. Brunetti
    • 5
  • B. Büttner
    • 11
  • S. Buontempo
    • 2
  • L. Chaussard
    • 6
  • M. Chernyavskiy
    • 12
  • V. Chiarella
    • 13
  • A. Chukanov
    • 14
  • L. Consiglio
    • 2
  • N. D’Ambrosio
    • 15
  • P. Del Amo Sanchez
    • 20
  • G. De Lellis
    • 2
    • 16
  • M. De Serio
    • 17
  • A. Di Crescenzo
    • 2
    • 16
  • D. Di Ferdinando
    • 18
  • N. Di Marco
    • 15
  • S. Dmitrievski
    • 14
  • M. Dracos
    • 19
  • D. Duchesneau
    • 20
  • S. Dusini
    • 8
  • J. Ebert
    • 11
  • A. Ereditato
    • 5
  • J. Favier
    • 20
  • T. Ferber
    • 11
    • 39
  • R. A. Fini
    • 17
  • T. Fukuda
    • 21
  • A. Garfagnini
    • 8
    • 10
  • G. Giacomelli
    • 22
    • 18
  • C. Goellnitz
    • 11
  • J. Goldberg
    • 25
  • Y. Gornushkin
    • 14
  • G. Grella
    • 9
  • F. Grianti
    • 13
    • 23
  • A. M Guler
    • 26
  • C. Gustavino
    • 27
  • C. Hagner
    • 11
  • K. Hakamata
    • 24
  • T. Hara
    • 4
  • T. Hayakawa
    • 24
  • M. Hierholzer
    • 11
    • 40
  • A. Hollnagel
    • 11
  • B. Hosseini
    • 2
    • 16
  • H. Ishida
    • 21
  • K. Ishiguro
    • 24
  • M. Ishikawa
    • 24
  • K. Jakovcic
    • 27
  • C. Jollet
    • 19
  • C. Kamiscioglu
    • 26
    • 37
  • M. Kamiscioglu
    • 26
  • T. Katsuragawa
    • 24
  • H. Kawahara
    • 24
  • J. Kawada
    • 5
  • J. H. Kim
    • 28
    • 33
  • S. H. Kim
    • 28
    • 33
    • 41
  • M. Kimura
    • 5
  • N. Kitagawa
    • 24
  • B. Klicek
    • 27
  • K. Kodama
    • 29
  • M. Komatsu
    • 24
  • U. Kose
    • 8
  • I. Kreslo
    • 5
  • A. Lauria
    • 2
    • 16
  • J. Lenkeit
    • 11
  • A. Ljubicic
    • 27
  • A. Longhin
    • 13
  • P. Loverre
    • 30
    • 27
  • A. Malgin
    • 1
  • G. Mandrioli
    • 18
  • J. Marteau
    • 6
  • T. Matsuo
    • 21
  • V. Matveev
    • 1
  • N. Mauri
    • 22
    • 18
  • E. Medinaceli
    • 8
    • 10
  • A. Meregaglia
    • 19
  • P. Migliozzi
    • 2
  • S. Mikado
    • 21
  • A. Minotti
    • 19
    • 30
  • M. Miyanishi
    • 24
  • E. Miyashita
    • 24
  • P. Monacelli
    • 33
  • M. C. Montesi
    • 2
    • 16
  • K. Morishima
    • 24
  • M. T. Muciaccia
    • 17
    • 31
  • N. Naganawa
    • 24
  • T. Naka
    • 24
  • M. Nakamura
    • 24
  • T. Nakano
    • 24
  • Y. Nakatsuka
    • 24
  • K. Niwa
    • 24
  • S. Ogawa
    • 21
  • N. Okateva
    • 12
  • A. Olshevsky
    • 14
  • T. Omura
    • 24
  • K. Ozaki
    • 4
  • A. Paoloni
    • 13
  • B. D. Park
    • 28
    • 42
  • I. G. Park
    • 28
  • A. Pastore
    • 17
  • L. Patrizii
    • 18
  • E. Pennacchio
    • 6
  • H. Pessard
    • 20
  • C. Pistillo
    • 5
  • D. Podgrudkov
    • 3
  • N. Polukhina
    • 12
  • M. Pozzato
    • 22
    • 18
  • K. Pretzl
    • 5
  • F. Pupilli
    • 15
  • R. Rescigno
    • 9
  • M. Roda
    • 8
  • T. Roganova
    • 3
  • H. Rokujo
    • 24
  • G. Rosa
    • 30
    • 27
  • I. Rostovtseva
    • 36
  • A. Rubbia
    • 7
  • A. Russo
    • 2
  • O. Ryazhskaya
    • 1
  • O. Sato
    • 24
  • Y. Sato
    • 34
  • A. Schembri
    • 15
  • W. Schmidt-Parzefall
    • 11
  • I. Shakiryanova
    • 1
  • T. Schcedrina
    • 12
    • 2
  • A. Sheshukov
    • 14
  • H. Shibuya
    • 21
  • T. Shiraishi
    • 24
  • G. Shoziyoev
    • 3
  • S. Simone
    • 17
    • 31
  • M. Sioli
    • 22
    • 18
  • C. Sirignano
    • 8
    • 10
  • G. Sirri
    • 18
  • M. Spinetti
    • 13
  • L. Stanco
    • 8
  • N. Starkov
    • 12
  • S. M. Stellacci
    • 9
  • M. Stipcevic
    • 27
  • T. Strauss
    • 5
  • P. Strolin
    • 2
    • 16
  • K. Suzuki
    • 24
  • S. Takahashi
    • 4
  • M. Tenti
    • 22
    • 18
  • F. Terranova
    • 13
    • 32
  • V. Tioukov
    • 2
  • P. Tolun
    • 26
  • S. Tufanli
    • 5
  • P. Vilain
    • 35
  • M. Vladimirov
    • 12
  • L. Votano
    • 13
  • J. L. Vuilleumier
    • 5
  • G. Wilquet
    • 35
  • B. Wonsak
    • 11
  • C. S. Yoon
    • 28
  • J. Yoshida
    • 24
  • M. Yoshimoto
    • 24
  • Y. Zaitsev
    • 36
  • S. Zemskova
    • 14
  • A. Zghiche
    • 20
  1. 1.INR Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  2. 2.INFN Sezione di NapoliNapoliItaly
  3. 3.SINP MSU-Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Kobe UniversityKobeJapan
  5. 5.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP)University of BernBernSwitzerland
  6. 6.IPNL, Université Claude Bernard Lyon 1, CNRS/IN2P3VilleurbanneFrance
  7. 7.ETH ZurichInstitute for Particle PhysicsZurichSwitzerland
  8. 8.INFN Sezione di PadovaPadovaItaly
  9. 9.Dip. di Fisica dell’Univ. di Salerno and “Gruppo Collegato” INFNFisciano (SA)Italy
  10. 10.Dipartimento di Fisica dell’Università di PadovaPadovaItaly
  11. 11.Hamburg UniversityHamburgGermany
  12. 12.LPI-Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  13. 13.INFN-Laboratori Nazionali di Frascati dell’INFNFrascati (Roma)Italy
  14. 14.JINR-Joint Institute for Nuclear ResearchDubnaRussia
  15. 15.INFN-Laboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  16. 16.Dipartimento di Scienze Fisiche dell’Università Federico II di NapoliNapoliItaly
  17. 17.INFN Sezione di BariBariItaly
  18. 18.INFN Sezione di BolognaBolognaItaly
  19. 19.IPHC, Université de Strasbourg, CNRS/IN2P3StrasbourgFrance
  20. 20.LAPP, Université de Savoie, CNRS IN2P3Annecy-le-VieuxFrance
  21. 21.Toho UniversityFunabashiJapan
  22. 22.Dipartimento di Fisica dell’Università di BolognaBolognaItaly
  23. 23.Università degli Studi di Urbino ‘Carlo Bo’UrbinoItaly
  24. 24.Nagoya UniversityNagoyaJapan
  25. 25.Department of PhysicsTechnionHaifaIsrael
  26. 26.METU Middle East Technical UniversityAnkaraTurkey
  27. 27.IRB-Rudjer Boskovic InstituteZagrebCroatia
  28. 28.Gyeongsang National University, ROK-900JinjuKorea
  29. 29.Aichi University of EducationKariya (Aichi-Ken)Japan
  30. 30.Dipartimento di Fisica dell’Università di Roma ‘La Sapienza’ and INFNRomaItaly
  31. 31.Dipartimento di Fisica dell’Università di BariBariItaly
  32. 32.Dipartimento di Fisica dell’Università di Milano-BicoccaMilanoItaly
  33. 33.Dipartimento di Fisica dell’Università dell’Aquila and INFNL’AquilaItaly
  34. 34.Utsunomiya UniversityUtsunomiyaJapan
  35. 35.IIHE, Université Libre de BruxellesBrusselsBelgium
  36. 36.ITEP-Institute for Theoretical and Experimental PhysicsMoscowRussia
  37. 37.Ankara UniversityAnkaraTurkey
  38. 38.INFN Sezione di RomaRomaItaly
  39. 39.Deutsches Elektronen Synchrotron (DESY)HamburgGermany
  40. 40.LHEPUniv. of BernBernSwitzerland
  41. 41.Kyungpook National Univ.DaeguRep. of Korea
  42. 42.Samsung Changwon HospitalSungkyunkwan Univ.ChangwonRep. of Korea

Personalised recommendations