Advertisement

Journal of High Energy Physics

, 2013:34 | Cite as

The pion vector form factor from lattice QCD and NNLO chiral perturbation theory

  • Bastian B. Brandt
  • Andreas JüttnerEmail author
  • Hartmut Wittig
Article

Abstract

We present a comprehensive study of the electromagnetic form factor, the decay constant and the mass of the pion computed in lattice QCD with two degenerate O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05 – 0.08 fm and pion masses between 280 and 630 MeV at m π L ≥ 4. Using partially twisted boundary conditions and stochastic estimators, we obtain a dense set of precise data points for the form factor at very small momentum transfers, allowing for a model-independent extraction of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model lattice artefacts is then compared to the data. At next-to-leading order the effective theory fails to produce a consistent description of the full set of pion observables but describes the data well when only the decay constant and mass are considered. By contrast, using the next-to-next-to-leading order expressions to perform global fits result in a consistent description of all data. We obtain \( \left\langle {r_{\pi}^2} \right\rangle =0.481\left( {33} \right)\left( {13} \right) \) fm2 as our final result for the charge radius at the physical point. Our calculation also yields estimates for the pion decay constant in the chiral limit, F π /F = 1.080(16)(6), the quark condensate, \( \sum {\frac{{{1 \left/ {3} \right.}}}{\mathrm{MS}}\left( {2\;\mathrm{GeV}} \right)} =261\left( {13} \right)(1) \) MeV and several low-energy constants of SU(2) ChPT.

Keywords

Lattice QCD Nonperturbative Effects Chiral Lagrangians 

References

  1. [1]
    M. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD, Comput. Phys. Commun. 165 (2005) 199 [hep-lat/0409106] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun. 174 (2006) 87 [hep-lat/0506011] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Clark and A. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Lüscher, Local coherence and deflation of the low quark modes in lattice QCD, JHEP 07 (2007) 081 [arXiv:0706.2298] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    M. Lüscher, Deflation acceleration of lattice QCD simulations, JHEP 12 (2007) 011 [arXiv:0710.5417] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    M. Lüscher and F. Palombi, Fluctuations and reweighting of the quark determinant on large lattices, PoS(LATTICE 2008)049 [arXiv:0810.0946] [INSPIRE].
  8. [8]
    M. Marinkovic and S. Schaefer, Comparison of the mass preconditioned HMC and the DD-HMC algorithm for two-flavour QCD, PoS(LATTICE 2010)031 [arXiv:1011.0911] [INSPIRE].
  9. [9]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    QCDSF/UKQCD collaboration, D. Brömmel et al., The Pion form-factor from lattice QCD with two dynamical flavours, Eur. Phys. J. C 51 (2007) 335 [hep-lat/0608021] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ETM collaboration, R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at N(f) = 2, Phys. Rev. D 79 (2009) 074506 [arXiv:0812.4042] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Boyle et al., The Pions electromagnetic form-factor at small momentum transfer in full lattice QCD, JHEP 07 (2008) 112 [arXiv:0804.3971] [INSPIRE].ADSGoogle Scholar
  13. [13]
    JLQCD Collaboration, TWQCD collaboration, S. Aoki et al., Pion form factors from two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 80 (2009) 034508 [arXiv:0905.2465] [INSPIRE].ADSGoogle Scholar
  14. [14]
    O.H. Nguyen, K.-I. Ishikawa, A. Ukawa and N. Ukita, Electromagnetic form factor of pion from N f = 2 + 1 dynamical flavor QCD, JHEP 04 (2011) 122 [arXiv:1102.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B.B. Brandt, A. Juttner and H. Wittig, Calculation of the pion electromagnetic form factor from lattice QCD, arXiv:1109.0196 [INSPIRE].
  16. [16]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form-factors of the pion to two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Bijnens and P. Talavera, Pion and kaon electromagnetic form-factors, JHEP 03 (2002) 046 [hep-ph/0203049] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].ADSGoogle Scholar
  21. [21]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice Determination of the Hadronic Contribution to the Muon g − 2 using Dynamical Domain Wall Fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Della Morte and A. Jüttner, Quark disconnected diagrams in chiral perturbation theory, JHEP 11 (2010) 154 [arXiv:1009.3783] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Della Morte, B. Jäger, A. Juttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ, JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    P.F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the lattice, Phys. Lett. B 593 (2004) 82 [nucl-th/0402051] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Boyle, J. Flynn, A. Juttner, C. Sachrajda and J. Zanotti, Hadronic form factors in Lattice QCD at small and vanishing momentum transfer, JHEP 05 (2007) 016 [hep-lat/0703005] [INSPIRE].Google Scholar
  29. [29]
    B.B. Brandt et al., Wilson fermions at fine lattice spacings: scale setting, pion form factors and (g − 2)μ, PoS(LATTICE 2010)164 [arXiv:1010.2390] [INSPIRE].
  30. [30]
    B. Brandt et al., Form factors in lattice QCD, Eur. Phys. J. ST 198 (2011) 79 [arXiv:1106.1554] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B.B. Brandt, A. Jüttner and H. Wittig, The electromagnetic form factor of the pion in two-flavour lattice QCD, PoS(Confinement X)112 [arXiv:1301.3513] [INSPIRE].
  32. [32]
    UKQCD collaboration, J. Flynn, A. Jüttner and C. Sachrajda, A numerical study of partially twisted boundary conditions, Phys. Lett. B 632 (2006) 313 [hep-lat/0506016] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  34. [34]
    ALPHA collaboration, K. Jansen and R. Sommer, O(a) improvement of lattice QCD with two flavors of Wilson quarks, Nucl. Phys. B 530 (1998) 185 [Erratum ibid. B 643 (2002) 517-518] [hep-lat/9803017] [INSPIRE].
  35. [35]
    M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [INSPIRE].
  36. [36]
    M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Sint and P. Weisz, Further one loop results in O(a) improved lattice QCD, Nucl. Phys. Proc. Suppl. 63 (1998) 856 [hep-lat/9709096] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Fritzsch et al., The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B 865 (2012) 397 [arXiv:1205.5380] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Della Morte, R. Sommer and S. Takeda, On cutoff effects in lattice QCD from short to long distances, Phys. Lett. B 672 (2009) 407 [arXiv:0807.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    ALPHA collaboration, Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [INSPIRE].ADSGoogle Scholar
  42. [42]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices. II. DD-HMC simulations and data analysis, JHEP 02 (2007) 082 [hep-lat/0701009] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Particle Data Group collaboration, Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Bulava, M. Donnellan and R. Sommer, On the computation of hadron-to-hadron transition matrix elements in lattice QCD, JHEP 01 (2012) 140 [arXiv:1108.3774] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Capitani et al., The nucleon axial charge from lattice QCD with controlled errors, Phys. Rev. D 86 (2012) 074502 [arXiv:1205.0180] [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ALPHA collaboration, B. Leder and F. Knechtli, Scale r 0 and the static potential from the CLS lattices, PoS(LATTICE 2010)233 [arXiv:1012.1141] [INSPIRE].
  48. [48]
    S. Capitani, M. Della Morte, G. von Hippel, B. Knippschild and H. Wittig, Scale setting via the Ω baryon mass, PoS(LATTICE 2011)145 [arXiv:1110.6365] [INSPIRE].
  49. [49]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [INSPIRE].ADSGoogle Scholar
  50. [50]
    UKQCD collaboration, C. McNeile and C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506 [hep-lat/0603007] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Boyle, A. Jüttner, C. Kelly and R. Kenway, Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].Google Scholar
  52. [52]
    E. Endress, A. Juttner and H. Wittig, On the efficiency of stochastic volume sources for the determination of light meson masses, arXiv:1111.5988 [INSPIRE].
  53. [53]
    RBC-UKQCD collaboration, P. Boyle et al., Kπ form factors with reduced model dependence, Eur. Phys. J. C 69 (2010) 159 [arXiv:1004.0886] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    B. Efron, Bootstrap methods: another look at the jacknife, Ann. Statist. 7 (1979) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    C. Michael, Fitting correlated data, Phys. Rev. D 49 (1994) 2616 [hep-lat/9310026] [INSPIRE].ADSGoogle Scholar
  56. [56]
    F.-J. Jiang and B. Tiburzi, Flavor twisted boundary conditions, pion momentum and the pion electromagnetic form-factor, Phys. Lett. B 645 (2007) 314 [hep-lat/0610103] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    NA7 collaboration, S. Amendolia et al., A Measurement of the Space-Like Pion Electromagnetic Form-Factor, Nucl. Phys. B 277 (1986) 168 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F.-J. Jiang and B.C. Tiburzi, Flavor Twisted Boundary Conditions in the Breit Frame, Phys. Rev. D 78 (2008) 037501 [arXiv:0806.4371] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    U. Burgi, Charged pion pair production and pion polarizabilities to two loops, Nucl. Phys. B 479 (1996) 392 [hep-ph/9602429] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    U. Burgi, Charged pion polarizabilities to two loops, Phys. Lett. B 377 (1996) 147 [hep-ph/9602421] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. Sainio, Pion pion scattering at low-energy, Nucl. Phys. B 508 (1997) 263 [Erratum ibid. B 517 (1998) 639] [hep-ph/9707291] [INSPIRE].
  65. [65]
    L. Del Debbio, H. Panagopoulos and E. Vicari, θ dependence of SU(N) gauge theories, JHEP 08 (2002) 044 [hep-th/0204125] [INSPIRE].
  66. [66]
    S. Schaefer, R. Sommer and F. Virotta, Investigating the critical slowing down of QCD simulations, PoS(LAT2009)032 [arXiv:0910.1465] [INSPIRE].
  67. [67]
    ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93 [arXiv:1009.5228] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    M. Gell-Mann, R. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Bastian B. Brandt
    • 1
  • Andreas Jüttner
    • 2
    Email author
  • Hartmut Wittig
    • 3
    • 4
  1. 1.Institut für theoretische PhysikUniversity of RegensburgRegensburgGermany
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  3. 3.PRISMA Cluster of Excellence, Institut für KernphysikUniversity of MainzMainzGermany
  4. 4.Helmholtz Institute MainzUniversity of MainzMainzGermany

Personalised recommendations