Advertisement

Journal of High Energy Physics

, 2013:20 | Cite as

Bino-Higgsino mixed dark matter in a focus point gaugino mediation

  • Tsutomu T. Yanagida
  • Norimi YokozakiEmail author
Article

Abstract

We investigate the neutralino dark matter in the focus point gaugino mediation model with the \( \mathcal{O}\left( {100} \right) \) GeV gravitino. The thermal relic abundance of the neutralino with a sizable Higgsino fraction can explain the dark matter density at the present universe. The spin-independent cross section is marginally consistent with the current upper limit from the XENON 100 experiment, and the whole parameter region can be covered at the XENON1T experiment. We also discuss the origin of the gluino mass to wino mass ratio at around 3/8, which is crucial for the mild fine-tuning in the electroweak symmetry breaking sector. It is shown that the existence of the non-anomalous discrete R-symmetry can fix this ratio to 3/8.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    T. Moroi, T.T. Yanagida and N. Yokozaki, Enhanced Higgs Mass in a Gaugino Mediation Model without the Polonyi Problem, Phys. Lett. B 719 (2013) 148 [arXiv:1211.4676] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.D. Linde, Relaxing the cosmological moduli problem, Phys. Rev. D 53 (1996) 4129 [hep-th/9601083] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    K. Nakayama, F. Takahashi and T.T. Yanagida, On the Adiabatic Solution to the Polonyi/Moduli Problem, Phys. Rev. D 84 (2011) 123523 [arXiv:1109.2073] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Cosmological Moduli Problem in Low Cutoff Theory, Phys. Rev. D 86 (2012) 043507 [arXiv:1112.0418] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T.T. Yanagida and N. Yokozaki, Focus Point in Gaugino Mediation - Reconsideration of the Fine-tuning Problem, Phys. Lett. B 722 (2013) 355 [arXiv:1301.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.L. Kane and S. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Abe, T. Kobayashi and Y. Omura, Relaxed fine-tuning in models with non-universal gaugino masses, Phys. Rev. D 76 (2007) 015002 [hep-ph/0703044] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Horton and G. Ross, Naturalness and Focus Points with Non-Universal Gaugino Masses, Nucl. Phys. B 830 (2010) 221 [arXiv:0908.0857] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].ADSGoogle Scholar
  11. [11]
    F. Brummer and W. Buchmüller, The Fermi scale as a focus point of high-scale gauge mediation, JHEP 05 (2012) 006 [arXiv:1201.4338] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Gogoladze, F. Nasir and Q. Shafi, Non-Universal Gaugino Masses and Natural Supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1350046 [arXiv:1212.2593] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  15. [15]
    F. Brümmer, M. Ibe and T.T. Yanagida, Focus point gauge mediation in product group unification, Phys. Lett. B 726 (2013) 364 [arXiv:1303.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, A Simple Solution to the Polonyi Problem in Gravity Mediation, Phys. Lett. B 721 (2013) 86 [arXiv:1301.3685] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    IceCube collaboration, M. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.
  25. [25]
    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  26. [26]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  27. [27]
    CMS collaboration, Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at 8 TeV, CMS-PAS-SUS-13-012.
  28. [28]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  30. [30]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Tevatron Electroweak Working Group, CDF, DO collaborations, Combination of CDF and DO results on the mass of the top quark using up to 8.7 f b −1 at the Tevatron, arXiv:1305.3929 [INSPIRE].
  34. [34]
    ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4.9 fb-1 of data, ATLAS-CONF-2012-095 (2012).
  35. [35]
    CMS collaboration, LHC Combination: Top mass, CMS-PAS-TOP-12-001.
  36. [36]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  37. [37]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  41. [41]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  42. [42]
    CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s = 7 and 8 TeV, CMS-PAS-HIG-13-002.
  43. [43]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001.
  44. [44]
    J.L. Feng, P. Kant, S. Profumo and D. Sanford, Three-Loop Corrections to the Higgs Boson Mass and Implications for Supersymmetry at the LHC, Phys. Rev. Lett. 111 (2013) 131802 [arXiv:1306.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, arXiv:1206.6288 [INSPIRE].
  49. [49]
    JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [arXiv:1208.4185] [INSPIRE].ADSGoogle Scholar
  50. [50]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, arXiv:1305.0491 [INSPIRE].
  51. [51]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Wikstrom and J. Edsjo, Limits on the WIMP-nucleon scattering cross-section from neutrino telescopes, JCAP 04 (2009) 009 [arXiv:0903.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Kurosawa, N. Maru and T. Yanagida, Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons, Phys. Lett. B 512 (2001) 203 [hep-ph/0105136] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Giudice and A. Masiero, A natural solution to the μ-problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Inoue, M. Kawasaki, M. Yamaguchi and T. Yanagida, Vanishing squark and slepton masses in a class of supergravity models, Phys. Rev. D 45 (1992) 328 [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Shirai, F. Takahashi and T. Yanagida, R-violating Decay of Wino Dark Matter and electron/positron Excesses in the PAMELA/Fermi Experiments, Phys. Lett. B 680 (2009) 485 [arXiv:0905.0388] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Yanagida, Naturally light Higgs doublets in the supersymmetric grand unified theories with dynamical symmetry breaking, Phys. Lett. B 344 (1995) 211 [hep-ph/9409329] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Hotta, K. Izawa and T. Yanagida, Dynamical models for light Higgs doublets in supersymmetric grand unified theories, Phys. Rev. D 53 (1996) 3913 [hep-ph/9509201] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T. Hotta, K. Izawa and T. Yanagida, Natural unification with a supersymmetric SO(10)GUT × SO(6)H gauge theory, Phys. Rev. D 54 (1996) 6970 [hep-ph/9602439] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Hisano and T. Yanagida, An N not = 2 SUSY gauge model for dynamical breaking of the grand unified SU(5) symmetry, Mod. Phys. Lett. A 10 (1995) 3097 [hep-ph/9510277] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Izawa and T. Yanagida, R invariant natural unification, Prog. Theor. Phys. 97 (1997) 913 [hep-ph/9703350] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced StudyUniversity of TokyoKashiwa-shiJapan

Personalised recommendations