Journal of High Energy Physics

, 2013:19 | Cite as

Entanglement and thermal entropy of gauge fields

  • Christopher ElingEmail author
  • Yaron Oz
  • Stefan Theisen


We consider the universal logarithmic divergent term in the entanglement entropy of gauge fields in the Minkowski vacuum with an entangling sphere. Employing the mapping in arXiv:1102.0440, we analyze the corresponding thermal entropy on open Einstein universe and on the static patch of de Sitter. Using the heat kernel of the vector Laplacian we resolve a discrepancy between the free field calculation and the expected Euler conformal anomaly. The resolution suggests a modification of the well known formulas for the vacuum expectation value of the spin-1 energy-momentum tensor on conformally flat space-times.


AdS-CFT Correspondence Gauge Symmetry Conformal and W Symmetry Anomalies in Field and String Theories 


  1. [1]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    P. Candelas and J. Dowker, Field theories on conformally related space-times: some global considerations, Phys. Rev. D 19 (1979) 2902 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [INSPIRE].
  6. [6]
    D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. Brown, A. Ottewill and D.N. Page, Conformally Invariant Quantum Field Theory in Static Einstein Space-times, Phys. Rev. D 33 (1986) 2840 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    L.S. Brown and J.P. Cassidy, Stress Tensors and their Trace Anomalies in Conformally Flat Space-Times, Phys. Rev. D 16 (1977) 1712 [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S. Christensen and M. Duff, New Gravitational Index Theorems and Supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    L. De Nardo, D.V. Fursaev and G. Miele, Heat kernel coefficients and spectra of the vector Laplacians on spherical domains with conical singularities, Class. Quant. Grav. 14 (1997) 1059 [hep-th/9610011] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    D.V. Fursaev and S.N. Solodukhin, On the description of the iemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    I. Arav and Y. Oz, The Sound of Topology in the AdS/CFT Correspondence, JHEP 11 (2012) 014 [arXiv:1206.5936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs, Class. Quant. Grav. 28 (2011) 105015 [arXiv:1007.3996] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    P. Candelas and D. Deutsch, On the vacuum stress induced by uniform acceleration or supporting the ether, Proc. Roy. Soc. Lond. A 354 (1977) 79 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    V.P. Frolov and E. Serebryanyi, Vacuum Polarization in the Gravitational Field of a Cosmic String, Phys. Rev. D 35 (1987) 3779 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Dowker, Vacuum Averages for Arbitrary Spin Around a Cosmic String, Phys. Rev. D 36 (1987) 3742 [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Allen, J. McLaughlin and A. Ottewill, Photon and graviton Greens functions on cosmic string space-times, Phys. Rev. D 45 (1992) 4486 [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    V. Moretti and L. Vanzo, Thermal Wightman functions and renormalized stress tensors in the Rindler wedge, Phys. Lett. B 375 (1996) 54 [hep-th/9507139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Yamazaki, Entanglement in Theory Space, Europhys. Lett. 103 (2013) 21002 [arXiv:1304.0762] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Kabat and D. Sarkar, Cosmic string interactions induced by gauge and scalar fields, Phys. Rev. D 86 (2012) 084021 [arXiv:1206.5642] [INSPIRE].ADSGoogle Scholar
  24. [24]
    W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev. D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Iellici and V. Moretti, Thermal partition function of photons and gravitons in a Rindler wedge, Phys. Rev. D 54 (1996) 7459 [hep-th/9607015] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    S.N. Solodukhin, Remarks on effective action and entanglement entropy of Maxwell field in generic gauge, JHEP 12 (2012) 036 [arXiv:1209.2677] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    V. Moretti, Direct zeta function approach and renormalization of one loop stress tensors in curved space-times, Phys. Rev. D 56 (1997) 7797 [hep-th/9705060] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations