Journal of High Energy Physics

, 2013:16 | Cite as

On periodically driven AdS/CFT

  • Roberto Auzzi
  • Shmuel Elitzur
  • Sven Bjarke Gudnason
  • Eliezer Rabinovici
Open Access


We use the AdS/CFT correspondence to study a thermally isolated conformal field theory in four dimensions which undergoes a repeated deformation by an external periodic time-dependent source coupled to an operator of dimension Δ. The initial state of the theory is taken to be at a finite temperature. We compute the energy dissipated in the system as a function of the frequency and of the dimension Δ of the perturbing operator. This is done in the linear response regime. In order to study the details of thermalization in the dual field theory, the leading-order backreaction on the AdS black brane metric is computed. The evolution of the event and the apparent horizons is monitored; the increase of area in each cycle coincides with the increase in the equilibrium entropy corresponding to the amount of energy dissipated. The time evolution of the entanglement entropy of a spherical region and that of the two-points function of a probe operator with a large dimension are also inspected; we find a delay in the thermalization of these quantities which is proportional to the size of the region which is being probed. Thus, the delay is more pronounced in the infrared. We comment on a possible transition in the time evolution of the energy fluctuations.


Gauge-gravity correspondence AdS-CFT Correspondence Quantum Dissipative Systems 


  1. [1]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSGoogle Scholar
  2. [2]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies, JHEP 04 (2005) 005 [hep-th/0503071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP 02 (2006) 006 [hep-th/0511061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. de Haro, I. Papadimitriou and A.C. Petkou, Conformally Coupled Scalars, Instantons and Vacuum Instability in AdS 4, Phys. Rev. Lett. 98 (2007) 231601 [hep-th/0611315] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Barbon and E. Rabinovici, Holography of AdS vacuum bubbles, JHEP 04 (2010) 123 [arXiv:1003.4966] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].
  8. [8]
    J. Barbon and E. Rabinovici, AdS Crunches, CFT Falls And Cosmological Complementarity, JHEP 04 (2011) 044 [arXiv:1102.3015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, Time-dependent stabilization in AdS/CFT, JHEP 08 (2012) 035 [arXiv:1206.2902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.-Y. Hung, M. Smolkin and E. Sorkin, Modification of late time phase structure by quantum quenches, Phys. Rev. Lett. 109 (2012) 155702 [arXiv:1206.2685] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L.-Y. Hung, M. Smolkin and E. Sorkin, (Non) supersymmetric quantum quenches, arXiv:1307.0376 [INSPIRE].
  18. [18]
    S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi and S.R. Wadia, Forced Fluid Dynamics from Gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    P. Basu and S.R. Das, Quantum Quench across a Holographic Critical Point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Bhaseen, J.P. Gauntlett, B. Simons, J. Sonner and T. Wiseman, Holographic Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum Quench Across a Zero Temperature Holographic Superfluid Transition, JHEP 03 (2013) 146 [arXiv:1211.7076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    P. Basu and A. Ghosh, Dissipative Nonlinear Dynamics in Holography, arXiv:1304.6349 [INSPIRE].
  29. [29]
    W.-J. Li, Y. Tian and H.-b. Zhang, Periodically Driven Holographic Superconductor, JHEP 07 (2013) 030 [arXiv:1305.1600] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, arXiv:1307.4740 [INSPIRE].
  31. [31]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.A. Hartnoll and S.P. Kumar, AdS black holes and thermal Yang-Mills correlators, JHEP 12 (2005) 036 [hep-th/0508092] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization - an ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.M. Wald and V. Iyer, Trapped surfaces in the Schwarzschild geometry and cosmic censorship, Phys. Rev. D 44 (1991) 3719 [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    G. Bunin, L. D’Alessio, Y. Kafri and A. Polkovnikov, Universal energy fluctuations in thermally isolated driven systems, Nature Physics 7 (2011) 913 [arXiv:1102.1735].ADSCrossRefGoogle Scholar
  51. [51]
    S. Rahav, I. Gilary and S. Fishman, Time independent description of rapidly oscillating potentials, Phys. Rev. Lett. 91 (2003) 110404 [nlin/0302023].ADSCrossRefGoogle Scholar
  52. [52]
    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    A. Buchel and J.T. Liu, Thermodynamics of the N = 2* flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  60. [60]
    L.-Y. Hung, R.C. Myers and M. Smolkin, Some Calculable Contributions to Holographic Entanglement Entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  62. [62]
    J.V. Rocha, Evaporation of large black holes in AdS: Coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    J.V. Rocha, Evaporation of large black holes in AdS: Greybody factor and decay rate, JHEP 08 (2009) 027 [arXiv:0905.4373] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standard, Applied Mathematics Series 55, Tenth edition, (1972).Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Roberto Auzzi
    • 1
  • Shmuel Elitzur
    • 2
  • Sven Bjarke Gudnason
    • 2
  • Eliezer Rabinovici
    • 1
    • 2
  1. 1.CERN PH-TH, CERNGeneva 23Switzerland
  2. 2.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations