Analytic solution for tachyon condensation in Berkovits’ open superstring field theory

Article

Abstract

We present an analytic solution for tachyon condensation on a non-BPS D-brane in Berkovits’ open superstring field theory. The solution is presented as a product of 2 × 2 matrices in two distinct GL2 subgroups of the open string star algebra. All string fields needed for computation of the nonpolynomial action can be derived in closed form, and the action produces the expected non-BPS D-brane tension in accordance with Sen’s conjecture. We also comment on how D-brane charges may be encoded in the topology of the tachyon vacuum gauge orbit.

Keywords

Tachyon Condensation D-branes String Field Theory 

References

  1. [1]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002 [hep-th/9912249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Moeller and W. Taylor, Level truncation and the tachyon in open bosonic string field theory, Nucl. Phys. B 583 (2000) 105 [hep-th/0002237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048 [hep-th/0211012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field theory, Nucl. Phys. B 587 (2000) 147 [hep-th/0002211] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P.-J. De Smet and J. Raeymaekers, Level four approximation to the tachyon potential in superstring field theory, JHEP 05 (2000) 051 [hep-th/0003220] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Iqbal and A. Naqvi, Tachyon condensation on a nonBPS D-brane, hep-th/0004015 [INSPIRE].
  8. [8]
    P.-J. De Smet, Tachyon condensation: Calculations in string field theory, hep-th/0109182 [INSPIRE].
  9. [9]
    J. Raeymaekers, Tachyon Condensation in String Field Theory, PhD Thesis, KULeuven (2001).Google Scholar
  10. [10]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP 08 (1998) 010 [hep-th/9805019] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439-451] [hep-th/9503099] [INSPIRE].
  17. [17]
    N. Berkovits, A New approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    I.Y. Arefeva, P. Medvedev and A. Zubarev, New Representation for String Field Solves the Consistency Problem for Open Superstring Field Theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Schnabl, private communication.Google Scholar
  22. [22]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    T. Erler, Comments on the tachyon vacuum in nonpolynomial superstring field theory, Talk delivered at the APCTP Focus Program on Current Trends in String Field Theory, Pohang, Korea, Dec. 2009, http://newton.skku.ac.kr/workshop/SFT2009/program.html.
  24. [24]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Y. Michishita, A Covariant action with a constraint and Feynman rules for fermions in open superstring field theory, JHEP 01 (2005) 012 [hep-th/0412215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L. Barosi and C. Tello, GSO(−) vertex operators and open superstring field theory in hybrid variables, JHEP 05 (2003) 004 [hep-th/0303246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Bagchi and A. Sen, Tachyon Condensation on Separated Brane-Antibrane System, JHEP 05 (2008) 010 [arXiv:0801.3498] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  32. [32]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    T. Erler, Split String Formalism and the Closed String Vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E.A. Arroyo, Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    L. Rastelli and B. Zwiebach, Solving Open String Field Theory with Special Projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic Solutions for Tachyon Condensation with General Projectors, hep-th/0611110 [INSPIRE].
  40. [40]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Erler, The Identity String Field and the Sliver Frame Level Expansion, JHEP 11 (2012) 150 [arXiv:1208.6287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: Foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, arXiv:1211.2649 [INSPIRE].
  48. [48]
    E.A. Arroyo, Comments on multibrane solutions in cubic superstring field theory, arXiv:1306.1865 [INSPIRE].
  49. [49]
    H. Hata and T. Kojita, Inversion Symmetry of Gravitational Coupling in Cubic String Field Theory, arXiv:1307.6636 [INSPIRE].
  50. [50]
    M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Gorbachev, New solution of the superstring equation of motion, Theor. Math. Phys. 162 (2010) 90 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    I. Ellwood, The Closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    Y. Michishita, On-shell gauge invariants and field strengths in open superstring field theory, Nucl. Phys. B 698 (2004) 111 [hep-th/0406242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    K. Ohmori, Level expansion analysis in NS superstring field theory revisited, hep-th/0305103 [INSPIRE].
  59. [59]
    T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Kroyter, Democratic Superstring Field Theory: Gauge Fixing, JHEP 03 (2011) 081 [arXiv:1010.1662] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Kroyter, Superstring field theory in the democratic picture, Adv. Theor. Math. Phys. 15 (2011) 741 [arXiv:0911.2962] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, JHEP 07 (2013) 033 [arXiv:1207.4785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 04 (2013) 050 [arXiv:1208.6206] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    N. Berkovits, The Tachyon potential in open Neveu-Schwarz string field theory, JHEP 04 (2000) 022 [hep-th/0001084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    L. Bonora, C. Maccaferri and D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    T. Erler and C. Maccaferri, Comments on Lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    G. Calcagni and G. Nardelli, Kinks of open superstring field theory, Nucl. Phys. B 823 (2009) 234 [arXiv:0904.3744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    L. Rastelli, Comments on the open string C algebra, Talk presented at the Simons Center workshop on String Field Theory, Stony Brook University, New York U.S.A. (2009).Google Scholar
  74. [74]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  75. [75]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    E. Witten, Overview of k-theory applied to strings, Int. J. Mod. Phys. A 16 (2001) 693 [hep-th/0007175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories, JHEP 10 (2008) 054 [arXiv:0805.4386] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory I: gauge fixing, ghost structure and propagator, JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    N. Berkovits, Constrained BV Description of String Field Theory, JHEP 03 (2012) 012 [arXiv:1201.1769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    S. Torii, Gauge fixing of open superstring field theory in the Berkovits non-polynomial formulation, Prog. Theor. Phys. Suppl. 188 (2011) 272 [arXiv:1201.1763] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  82. [82]
    S. Torii, Validity of Gauge-Fixing Conditions and the Structure of Propagators in Open Superstring Field Theory, JHEP 04 (2012) 050 [arXiv:1201.1762] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic

Personalised recommendations