Advertisement

Analytic solution for tachyon condensation in Berkovits’ open superstring field theory

  • Theodore Erler
Article

Abstract

We present an analytic solution for tachyon condensation on a non-BPS D-brane in Berkovits’ open superstring field theory. The solution is presented as a product of 2 × 2 matrices in two distinct GL 2 subgroups of the open string star algebra. All string fields needed for computation of the nonpolynomial action can be derived in closed form, and the action produces the expected non-BPS D-brane tension in accordance with Sen’s conjecture. We also comment on how D-brane charges may be encoded in the topology of the tachyon vacuum gauge orbit.

Keywords

Tachyon Condensation D-branes String Field Theory 

References

  1. [1]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002 [hep-th/9912249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Moeller and W. Taylor, Level truncation and the tachyon in open bosonic string field theory, Nucl. Phys. B 583 (2000) 105 [hep-th/0002237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048 [hep-th/0211012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field theory, Nucl. Phys. B 587 (2000) 147 [hep-th/0002211] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P.-J. De Smet and J. Raeymaekers, Level four approximation to the tachyon potential in superstring field theory, JHEP 05 (2000) 051 [hep-th/0003220] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    A. Iqbal and A. Naqvi, Tachyon condensation on a nonBPS D-brane, hep-th/0004015 [INSPIRE].
  8. [8]
    P.-J. De Smet, Tachyon condensation: Calculations in string field theory, hep-th/0109182 [INSPIRE].
  9. [9]
    J. Raeymaekers, Tachyon Condensation in String Field Theory, PhD Thesis, KULeuven (2001).Google Scholar
  10. [10]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP 08 (1998) 010 [hep-th/9805019] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439-451] [hep-th/9503099] [INSPIRE].
  17. [17]
    N. Berkovits, A New approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    I.Y. Arefeva, P. Medvedev and A. Zubarev, New Representation for String Field Solves the Consistency Problem for Open Superstring Field Theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Schnabl, private communication.Google Scholar
  22. [22]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    T. Erler, Comments on the tachyon vacuum in nonpolynomial superstring field theory, Talk delivered at the APCTP Focus Program on Current Trends in String Field Theory, Pohang, Korea, Dec. 2009, http://newton.skku.ac.kr/workshop/SFT2009/program.html.
  24. [24]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Y. Michishita, A Covariant action with a constraint and Feynman rules for fermions in open superstring field theory, JHEP 01 (2005) 012 [hep-th/0412215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L. Barosi and C. Tello, GSO(−) vertex operators and open superstring field theory in hybrid variables, JHEP 05 (2003) 004 [hep-th/0303246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Bagchi and A. Sen, Tachyon Condensation on Separated Brane-Antibrane System, JHEP 05 (2008) 010 [arXiv:0801.3498] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    T. Erler, Split String Formalism and the Closed String Vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E.A. Arroyo, Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    L. Rastelli and B. Zwiebach, Solving Open String Field Theory with Special Projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic Solutions for Tachyon Condensation with General Projectors, hep-th/0611110 [INSPIRE].
  40. [40]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Erler, The Identity String Field and the Sliver Frame Level Expansion, JHEP 11 (2012) 150 [arXiv:1208.6287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: Foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, arXiv:1211.2649 [INSPIRE].
  48. [48]
    E.A. Arroyo, Comments on multibrane solutions in cubic superstring field theory, arXiv:1306.1865 [INSPIRE].
  49. [49]
    H. Hata and T. Kojita, Inversion Symmetry of Gravitational Coupling in Cubic String Field Theory, arXiv:1307.6636 [INSPIRE].
  50. [50]
    M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Gorbachev, New solution of the superstring equation of motion, Theor. Math. Phys. 162 (2010) 90 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    I. Ellwood, The Closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    Y. Michishita, On-shell gauge invariants and field strengths in open superstring field theory, Nucl. Phys. B 698 (2004) 111 [hep-th/0406242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    K. Ohmori, Level expansion analysis in NS superstring field theory revisited, hep-th/0305103 [INSPIRE].
  59. [59]
    T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Kroyter, Democratic Superstring Field Theory: Gauge Fixing, JHEP 03 (2011) 081 [arXiv:1010.1662] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Kroyter, Superstring field theory in the democratic picture, Adv. Theor. Math. Phys. 15 (2011) 741 [arXiv:0911.2962] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, JHEP 07 (2013) 033 [arXiv:1207.4785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 04 (2013) 050 [arXiv:1208.6206] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    N. Berkovits, The Tachyon potential in open Neveu-Schwarz string field theory, JHEP 04 (2000) 022 [hep-th/0001084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    L. Bonora, C. Maccaferri and D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    T. Erler and C. Maccaferri, Comments on Lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    G. Calcagni and G. Nardelli, Kinks of open superstring field theory, Nucl. Phys. B 823 (2009) 234 [arXiv:0904.3744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    L. Rastelli, Comments on the open string C algebra, Talk presented at the Simons Center workshop on String Field Theory, Stony Brook University, New York U.S.A. (2009).Google Scholar
  74. [74]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  75. [75]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    E. Witten, Overview of k-theory applied to strings, Int. J. Mod. Phys. A 16 (2001) 693 [hep-th/0007175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories, JHEP 10 (2008) 054 [arXiv:0805.4386] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory I: gauge fixing, ghost structure and propagator, JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    N. Berkovits, Constrained BV Description of String Field Theory, JHEP 03 (2012) 012 [arXiv:1201.1769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    S. Torii, Gauge fixing of open superstring field theory in the Berkovits non-polynomial formulation, Prog. Theor. Phys. Suppl. 188 (2011) 272 [arXiv:1201.1763] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    S. Torii, Validity of Gauge-Fixing Conditions and the Structure of Propagators in Open Superstring Field Theory, JHEP 04 (2012) 050 [arXiv:1201.1762] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic

Personalised recommendations