Journal of High Energy Physics

, 2012:171 | Cite as

Scaling BPS solutions and pure-Higgs states

  • Iosif Bena
  • Micha Berkooz
  • Jan de Boer
  • Sheer El-Showk
  • Dieter Van den Bleeken
Open Access
Article

Abstract

Depending on the value of the coupling, BPS states of type II string theory compactified on a Calabi-Yau manifold can be described as multicenter supergravity solutions or as BPS states in a quiver gauge theory. While states that spread into the Coulomb-branch states can be mapped one-to-one to supergravity states, this is not automatically so for the majority of Higgs-branch states. In this paper we explicitly compute the BPS spectrum of the Higgs branch of a three-center quiver with a closed loop, and identify the subset of states that are in one-to-one correspondence with Coulomb/supergravity multicenter states. We also show that there exist additional “pure-Higgs” states, that exist if and only if the charges of the centers can form a scaling solution. Using generating function techniques we compute the large charge degeneracy of the “pure-Higgs” sector and show that it is always exponential. We also construct the map between Higgs- and Coulomb-branch states, discuss its relation to the Higgs-Coulomb map of one of the authors and Verlinde, and argue that the pure Higgs states live in the kernel of this map. Given that these states have no obvious description on the Coulomb branch or in supergravity, we discuss whether they can correspond to a single-center black hole or can be related to more complicated horizonless configurations.

Keywords

Black Holes in String Theory Gauge-gravity correspondence M(atrix) Theories Sigma Models 

References

  1. [1]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J. Michelson and A. Strominger, Superconformal multiblack hole quantum mechanics, JHEP 09 (1999) 005 [hep-th/9908044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997)002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006)066001 [hep-th/0505166] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    B. Pioline, Four ways across the wall, J. Phys. Conf. Ser. 346 (2012) 012017 [arXiv:1103.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J. Manschot, B. Pioline and A. Sen, Wall crossing from Boltzmann black hole halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Berkooz and H.L. Verlinde, Matrix theory, AdS/CFT and Higgs-Coulomb equivalence, JHEP 11 (1999) 037 [hep-th/9907100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006)042 [hep-th/0608217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005)793 [hep-th/0502050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008)1 [hep-th/0701216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [INSPIRE].
  19. [19]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [INSPIRE].
  22. [22]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999)011 [hep-th/9812073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Sen, Equivalence of three wall crossing formulae, arXiv:1112.2515 [INSPIRE].
  24. [24]
    J. Manschot, B. Pioline and A. Sen, A fixed point formula for the index of multi-centered N =2 black holes, JHEP 05(2011)057 [arXiv:1103.1887][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    F. Denef, B.R. Greene and M. Raugas, Split attractor flows and the spectrum of BPS D-branes on the quintic, JHEP 05 (2001) 012 [hep-th/0101135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    B. Gaasbeek, A holographic bound on the scaling contribution to black hole entropy, arXiv:1203.4752 [INSPIRE].
  27. [27]
    I. Goulden and D. Jackson, Combinatoric enumeration, Wiley & Sons, Inc., Somerset U.S.A. (1983).Google Scholar
  28. [28]
    R. Pemantle and M.C. Wilson, Asymptotics of multivariate sequences, part I. Smooth points of the singular variety, J. Combin. Theory Ser. A97 (2002) 129 [math/0003192].MathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Pemantle and M.C. Wilson, Twenty combinatorial examples of asymptotics derived from multivariate generating functions, SIAM Review 50 (2008) 199 [math/0512548].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    E. Witten, On the conformal field theory of the Higgs branch, JHEP 07 (1997) 003 [hep-th/9707093] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Aharony and M. Berkooz, IR dynamics of D = 2, N = (4, 4) gauge theories and DLCQ oflittle string theories’, JHEP 10 (1999) 030 [hep-th/9909101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton calculus and the AdS/CFT correspondence in N = 4 superconformal field theory, Nucl. Phys. B 552 (1999) 88 [hep-th/9901128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    D. Anninos, T. Anous, J. Barandes, F. Denef and B. Gaasbeek, Hot halos and galactic glasses, JHEP 01 (2012) 003 [arXiv:1108.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.R. Douglas, D.N. Kabat, P. Pouliot and S.H. Shenker, D-branes and short distances in string theory, Nucl. Phys. B 485 (1997) 85 [hep-th/9608024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D.-E. Diaconescu and R. Entin, A nonrenormalization theorem for the D = 1, N = 8 vector multiplet, Phys. Rev. D 56 (1997) 8045 [hep-th/9706059] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Iosif Bena
    • 1
  • Micha Berkooz
    • 2
  • Jan de Boer
    • 3
  • Sheer El-Showk
    • 1
  • Dieter Van den Bleeken
    • 4
  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS URA 2306Gif-sur-YvetteFrance
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Boğaziçi University Physics DepartementBebek / IstanbulTurkey

Personalised recommendations