Journal of High Energy Physics

, 2012:170 | Cite as

Resurgence and trans-series in Quantum Field Theory: the \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) model

Article

Abstract

This work is a step towards a non-perturbative continuum definition of quantum field theory (QFT), beginning with asymptotically free two dimensional non-linear sigma-models, using recent ideas from mathematics and QFT. The ideas from mathematics are resurgence theory, the trans-series framework, and Borel-Écalle resummation. The ideas from QFT use continuity on \({{\mathbb{R}}^1}\times \mathbb{S}_L^1\), i.e., the absence of any phase transition as N → ∞ or rapid-crossovers for finite-N, and the small-L weak coupling limit to render the semi-classical sector well-defined and calculable. We classify semi-classical configurations with actions 1/N (kink-instantons), 2/N (bions and bi-kinks), in units where the 2d instanton action is normalized to one. Perturbation theory possesses the IR-renormalon ambiguity that arises due to non-Borel summability of the large-orders perturbation series (of Gevrey-1 type), for which a microscopic cancellation mechanism was unknown. This divergence must be present because the corresponding expansion is on a singular Stokes ray in the complexified coupling constant plane, and the sum exhibits the Stokes phenomenon crossing the ray. We show that there is also a non-perturbative ambiguity inherent to certain neutral topological molecules (neutral bions and bion-anti-bions) in the semiclassical expansion. We find a set of “confluence equations” that encode the exact cancellation of the two different type of ambiguities. There exists a resurgent behavior in the semi-classical trans-series analysis of the QFT, whereby subleading orders of exponential terms mix in a systematic way, canceling all ambiguities. We show that a new notion of “graded resurgence triangle” is necessary to capture the path integral approach to resurgence, and that graded resurgence underlies a potentially rigorous definition of general QFTs. The mass gap and the Θ angle dependence of vacuum energy are calculated from first principles, and are in accord with large-N and lattice results.

Keywords

Field Theories in Lower Dimensions Solitons Monopoles and Instantons Nonperturbative Effects Renormalization Regularization and Renormalons 

References

  1. [1]
    R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, U.S.A. (1973).MATHGoogle Scholar
  2. [2]
    J. Écalle, Les fonctions resurgentes (in French), volume 1, Publ. Math. Orsay, France (1981).Google Scholar
  3. [3]
    J. Écalle, Les fonctions resurgentes (in French), volume 2, Publ. Math. Orsay, France (1981).Google Scholar
  4. [4]
    M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Roy. Soc. London A 430 (1990) 653.MathSciNetADSGoogle Scholar
  5. [5]
    M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. London A 434 (1991) 657.MathSciNetADSGoogle Scholar
  6. [6]
    M.V. Berry, Asymptotics, superasymptotics, hyperasymptotics. . . , in Asymptotics beyond all orders, H. Segur et al. eds., Plenum Press, New York U.S.A. (1991).Google Scholar
  7. [7]
    D. Sauzin, Resurgent functions and splitting problems, arXiv:0706.0137.
  8. [8]
    O. Costin, Asymptotics and Borel summability, Chapman & Hall/CRC, London U.K. (2009).MATHGoogle Scholar
  9. [9]
    E. Delabaere, Introduction to the Ecalle theory, in Computer algebra and differential equations, London Math. Soc., Lecture Note Series 193, Cambridge University Press, Cambridge U.K. (1994), pg. 59.Google Scholar
  10. [10]
    B.Y. Sternin and V.E. Shatalov, Borel-Laplace transform and asymptotic theory: introduction to resurgent analysis, CRC, U.S.A. (1996).MATHGoogle Scholar
  11. [11]
    M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.M. Anber and E. Poppitz, Microscopic structure of magnetic bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Poppitz, T. Schaefer and M. Ünsal, Continuity, deconfinement and (super) Yang-Mills theory, JHEP 10 (2012) 115 [arXiv:1205.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.C. Myers and M.C. Ogilvie, New phases of SU(3) and SU(4) at finite temperature, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Shifman and M. Ünsal, QCD-like theories on \({{\mathbb{R}}^3}\times {{\mathbb{S}}^1}\) : a smooth journey from small to large \(r\left( {{{\mathbb{S}}^1}} \right)\) with double-trace deformations, Phys. Rev. D 78 (2008) 065004 [arXiv:0802.1232] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Douglas, Foundations of Quantum Field Theory, talk at String-Math 2011, UPenn, Philadelphia U.S.A. June 6–11 2011.Google Scholar
  19. [19]
    P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.C. Argyres, M. Ünsal and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Bogomolny and V. Fateev, Large orders calculations in the gauge theories, Phys. Lett. B 71 (1977) 93 [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    E. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Brézin, G. Parisi and J. Zinn-Justin, Perturbation theory at large orders for potential with degenerate minima, Phys. Rev. D 16 (1977) 408 [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Stone and J. Reeve, Late terms in the asymptotic expansion for the energy levels of a periodic potential, Phys. Rev. D 18 (1978) 4746 [INSPIRE].ADSGoogle Scholar
  25. [25]
    R. Balian, G. Parisi and A. Voros, Discrepancies from asymptotic series and their relation to complex classical trajectories, Phys. Rev. Lett. 41 (1978) 1141 [Erratum ibid. 41 (1978) 1627].ADSCrossRefGoogle Scholar
  26. [26]
    R. Balian, G. Parisi and A. Voros, Quartic oscillator, in Feynman path integrals, S. Albeverio et al. eds., Springer Lecture Notes in Mathematics, Springer, Berlin Germany (1979).Google Scholar
  27. [27]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics. 2, Nucl. Phys. B 218 (1983) 333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    U.D. Jentschura, A. Surzhykov and J. Zinn-Justin, Multi-instantons and exact results. 3: unification of even and odd anharmonic oscillators, Annals Phys. 325 (2010) 1135 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    U.D. Jentschura and J. Zinn-Justin, Multi-instantons and exact results. 4: path integral formalism, Annals Phys. 326 (2011) 2186 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford University Press, Oxford U.K. (2002).CrossRefGoogle Scholar
  32. [32]
    I. Balitsky and A. Yung, Instanton molecular vacuum in N = 1 supersymmetric quantum mechanics, Nucl. Phys. B 274 (1986) 475 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    E. Brezin and J. Zinn-Justin, Expansion of the \(H_2^{+}\) ground state energy in inverse powers of the distance between the two protons, J. Phys. Lett. 40 (1979) L511.CrossRefGoogle Scholar
  34. [34]
    R.J. Damburg et al., 1/R expansion for \(H_2^{+}\) analyticity, summability, asymptotics, and calculation of exponentially small terms, Phys. Rev. Lett. 52 (1984) 1112.ADSCrossRefGoogle Scholar
  35. [35]
    P. Achuthan, H.J.W. Muller-Kirsten and A. Wiedemann, Perturbation theory and boundary conditions: analogous treatments of anharmonic oscillators and double wells and similarly related potentials and the calculation of exponentially small contributions to eigenvalues, Fortsch. Phys. 38 (1990) 78.MathSciNetADSGoogle Scholar
  36. [36]
    J.C. Le Guillou and J. Zinn-Justin eds., Large order behavior of perturbation theory, North-Holland, Amsterdam The Netherlands (1990).Google Scholar
  37. [37]
    U.D. Jentschura and J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions, Phys. Lett. B 596 (2004) 138 [hep-ph/0405279] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184 (1969) 1231 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    C.M. Bender and T.T. Wu, Anharmonic oscillator 2: a study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Beneke, Renormalization scheme invariant large order perturbation theory and infrared renormalons in QCD, Phys. Lett. B 307 (1993) 154 [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré A 39 (1983) 211.MathSciNetGoogle Scholar
  43. [43]
    E. Delabaere, H. Dillinger and F. Pham, Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997) 6126.MathSciNetADSMATHCrossRefGoogle Scholar
  44. [44]
    E. Delabaere and F. Pham, Unfolding the quartic oscillator, Ann. Phys. 261 (1997) 180.MathSciNetADSMATHCrossRefGoogle Scholar
  45. [45]
    E. Delabaere and F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré A 71 (1999) 1.MathSciNetGoogle Scholar
  46. [46]
    E. Delabaere, Spectre de lopérateur de Schrödinger stationnaire unidimensionnel à potentiel polynôme trigonométrique (in French), Compt. Rend. Acad. Sci. Paris 314 (1992) 807.MathSciNetMATHGoogle Scholar
  47. [47]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-dimensional sigma models: modeling nonperturbative effects of quantum chromodynamics, Phys. Rept. 116 (1984) 103.MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    L. Lipatov, Divergence of the perturbation theory series and the quasiclassical theory, Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    G. ’t Hooft, Can we make sense out of quantum chromodynamics?, in the Proceedings of the 1977 international school of subnuclear physics, Erice Italy July 23-August 10 1977, pg. 943 [Subnucl. Ser. 15 (1979) 943].Google Scholar
  50. [50]
    W.P. Thurston, On proof and progress in mathematics, math/9404236.
  51. [51]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, arXiv:1106.5922 [INSPIRE].
  52. [52]
    S. Pasquetti and R. Schiappa, Borel and Stokes nonperturbative phenomena in topological string theory and c = 1 matrix models, Annales H. Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  53. [53]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Marino, R. Schiappa and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetMATHGoogle Scholar
  55. [55]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 3001 [arXiv:1104.0783] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Marino, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, arXiv:1206.6272 [INSPIRE].
  57. [57]
    O. Costin and S. Garoufalidis, Resurgence of the Kontsevich-Zagier power series, math/0609619.
  58. [58]
    M. Kontsevich, Resurgence from the path integral perspective, Perimeter Institute Seminar, Canada August 2012.Google Scholar
  59. [59]
    S. Coleman, Aspects of symmetry, Cambridge University Press, Cambridge U.K. (1985).MATHCrossRefGoogle Scholar
  60. [60]
    F. David, Cancellations of infrared divergences in two-dimensional chiral models, Phys. Lett. B 96 (1980) 371 [INSPIRE].ADSGoogle Scholar
  61. [61]
    F. David, Instantons and condensates in two-dimensional \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) models, Phys. Lett. B 138 (1984) 139 [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/N expandable series of nonlinear σ-models with instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Witten, Instantons, the quark model, and the 1/N expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Jevicki, Instantons and the 1/N expansion in nonlinear σ-models, Phys. Rev. D 20 (1979) 3331 [INSPIRE].ADSGoogle Scholar
  65. [65]
    I. Affleck, Testing the instanton method, Phys. Lett. B 92 (1980) 149 [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    I. Affleck, The role of instantons in scale invariant gauge theories, Nucl. Phys. B 162 (1980) 461 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    I. Affleck, The role of instantons in scale invariant gauge theories. 2. The short distance limit, Nucl. Phys. B 171 (1980) 420 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    G. Munster, A study of \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) models on the sphere within the 1/N expansion, Nucl. Phys. B 218 (1983) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    M. Aguado and M. Asorey, Theta-vacuum and large-N limit in \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) σ models, Nucl. Phys. B 844 (2011) 243 [arXiv:1009.2629] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].ADSGoogle Scholar
  72. [72]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  73. [73]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    K. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    T.C. Kraan and P. van Baal, Periodic instantons with non-trivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T.C. Kraan and P. van Baal, Monopole constituents inside SU(N) calorons, Phys. Lett. B 435 (1998) 389 [hep-th/9806034] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Bruckmann, Instanton constituents in the O(3) model at finite temperature, Phys. Rev. Lett. 100 (2008) 051602 [arXiv:0707.0775] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    W. Brendel, F. Bruckmann, L. Janssen, A. Wipf and C. Wozar, Instanton constituents and fermionic zero modes in twisted \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) models, Phys. Lett. B 676 (2009) 116 [arXiv:0902.2328] [INSPIRE].MathSciNetADSGoogle Scholar
  81. [81]
    D. Harland, Kinks, chains and loop groups in the \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) σ-models, J. Math. Phys. 50 (2009) 122902 [arXiv:0902.2303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    P. Sutcliffe, Instanton chains with soliton limits, Phys. Lett. B 302 (1993) 237 [INSPIRE].MathSciNetADSGoogle Scholar
  83. [83]
    A.I. Vainshtein, Decaying systems and divergence of perturbation theory, Novosibirsk Report, December 1964, reprinted in Russian, with an English translation by M. Shifman, and a commentary by G.V. Dunne, Perturbative-nonperturbative connection in quantum mechanics and field theory, published in Continuous advances in QCD 2002/ARKADYFEST, K.A. Olive, M.A. Shifman and M.B. Voloshin eds., World Scientific, Singapore (2002) [hep-th/0207046] [INSPIRE].
  84. [84]
    NIST digital library of mathematical functions webpage, online at http://dlmf.nist.gov/.
  85. [85]
    A. Das and G.V. Dunne, Large-order perturbation theory and de Sitter/anti de Sitter effective actions, Phys. Rev. D 74 (2006) 044029 [hep-th/0607168] [INSPIRE].MathSciNetADSGoogle Scholar
  86. [86]
    J.G. Russo, A note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. D’Adda and A.C. Davis, Chiral symmetry restoration in the \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) in two-dimensions model with fermions, Phys. Lett. B 101 (1981) 85 [INSPIRE].MathSciNetADSGoogle Scholar
  88. [88]
    B. Candelpergher, J.C. Nosmas and F. Pham, Premiers pas en calcul étranger (in French), Ann. Inst. Fourier 43 (1993) 201.MathSciNetMATHCrossRefGoogle Scholar
  89. [89]
    A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    M.C. Ogilvie and G.S. Guralnik, Instantons and vortices in two-dimensions, Nucl. Phys. B 190 (1981) 325 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. Gorsky, M. Shifman and A. Yung, Higgs and Coulomb/confining phases intwisted-massdeformed \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) model, Phys. Rev. D 73 (2006) 065011 [hep-th/0512153] [INSPIRE].MathSciNetADSGoogle Scholar
  93. [93]
    P.A. Bolokhov, M. Shifman and A. Yung, BPS spectrum of supersymmetric \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) theory with Z N twisted masses, Phys. Rev. D 84 (2011) 085004 [arXiv:1104.5241] [INSPIRE].ADSGoogle Scholar
  94. [94]
    X. Cui and M. Shifman, Perturbative aspects of heterotically deformed \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) σ-model. I, Phys. Rev. D 82 (2010) 105022 [arXiv:1009.4421] [INSPIRE].ADSGoogle Scholar
  95. [95]
    X. Cui and M. Shifman, N = (0, 2) supersymmetry and a nonrenormalization theorem, Phys. Rev. D 84 (2011) 105016 [arXiv:1105.5107] [INSPIRE];ADSGoogle Scholar
  96. [96]
    X. Cui and M. Shifman, N = (0, 2) deformation of \(\mathbb{C}{{\mathbb{P}}^1}\) model: two-dimensional analog of N = 1 Yang-Mills theory in four dimensions, Phys. Rev. D 85 (2012) 045004 [arXiv:1111.6350] [INSPIRE].ADSGoogle Scholar
  97. [97]
    E. Mottola and A. Wipf, Unsuppressed fermion number violation at high temperature: an O(3) model, Phys. Rev. D 39 (1989) 588 [INSPIRE].MathSciNetADSGoogle Scholar
  98. [98]
    J. Snippe, Tunneling through sphalerons: the O(3) σ-model on a cylinder, Phys. Lett. B 335 (1994) 395 [hep-th/9405129] [INSPIRE].MathSciNetADSGoogle Scholar
  99. [99]
    J. Snippe and P. van Baal, A new approach to instanton calculations in the O(3) nonlinear σ-model, Nucl. Phys. Proc. Suppl. B 42 (1995) 779 [hep-lat/9411055] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Vachaspati, Soliton creation with a twist, Phys. Rev. D 84 (2011) 125003 [arXiv:1109.1065] [INSPIRE].ADSGoogle Scholar
  101. [101]
    T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    W.J. Zakrzewski, Low dimensional sigma models, Adam Hilger, Bristol U.K. (1989).MATHGoogle Scholar
  104. [104]
    T.M.W. Nye and M.A. Singer, An L 2 -index theorem for Dirac operators on \({{\mathbb{S}}^1}\times {{\mathbb{R}}^3}\), math/0009144 [INSPIRE].
  105. [105]
    E. Poppitz and M. Ünsal, Index theorem for topological excitations on \({{\mathbb{R}}^3}\times {{\mathbb{S}}^1}\) and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    C.M. Bender and T.T. Wu, Statistical analysis of Feynman diagrams, Phys. Rev. Lett. 37 (1976) 117 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012) 105012 [arXiv:1201.6426] [INSPIRE].Google Scholar
  108. [108]
    E. Vicari and H. Panagopoulos, θ dependence of SU(N) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    B. Collie and D. Tong, The partonic nature of instantons, JHEP 08 (2009) 006 [arXiv:0905.2267] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  110. [110]
    G.V. Dunne and M. Ünsal, Continuity and resurgence: towards a continuum definition of the \(\mathbb{C}{{\mathbb{P}}^{N-1 }}\) model, arXiv:1210.3646 [INSPIRE].
  111. [111]
    G.V. Dunne and M. Ünsal, The physics of resurgent trans-series, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ConnecticutStorrsU.S.A.
  2. 2.Department of Physics and Astronomy, SFSUSan FranciscoU.S.A.

Personalised recommendations