Journal of High Energy Physics

, 2012:133

B-field in AdS3/CF T2 correspondence and integrability

Article

Abstract

We construct topological Wess-Zumino term for supercoset sigma-models on various AdS3 backgrounds. For appropriately chosen set of parameters, the sigma-model remains integrable when the Wess-Zumino term is added to the action. Moreover, the conditions for integrability, kappa-symmetry and conformal invariance are equivalent to each other.

Keywords

AdS-CFT Correspondence Integrable Field Theories Sigma Models 

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS 3 × S 3 × S 3 × S 1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS 3, JHEP 12 (1998) 026 [hep-th/9812046] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, \(\mathbb{R}\)) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, \(\mathbb{R}\)) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2, \(\mathbb{R}\)) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S.K. Ashok, R. Benichou and J. Troost, Asymptotic Symmetries of String Theory on AdS 3 × S 3 with Ramond-Ramond Fluxes, JHEP 10 (2009) 051 [arXiv:0907.1242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    B. Chen, Y.-L. He, P. Zhang and X.-C. Song, Flat currents of the Green-Schwarz superstrings in AdS 5 × S 1 and AdS 3 × S 3 backgrounds, Phys. Rev. D 71 (2005) 086007 [hep-th/0503089] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3 /CF T 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS 3 /CF T 2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].MathSciNetGoogle Scholar
  13. [13]
    R. Benichou, Fusion of line operators in conformal σ-models on supergroups and the Hirota equation, JHEP 01 (2011) 066 [arXiv:1011.3158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 07 (2012) 159 arXiv:1204.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Quella, V. Schomerus and T. Creutzig, Boundary Spectra in Superspace σ-models, JHEP 10 (2008) 024 [arXiv:0712.3549] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S. Novikov, “The Hamiltonian formalism and a many valued analog of Morse theory”, Usp. Mat. Nauk. 37N5 (1982) 3.Google Scholar
  18. [18]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455.MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    J. Rahmfeld and A. Rajaraman, The GS string action on AdS 3 × S 3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    I. Pesando, The GS type IIB superstring action on AdS 3 × S 3 × T 4, JHEP 02 (1999) 007 [hep-th/9809145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl. 17 (1983) 200 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    I. Adam, A. Dekel, L. Mazzucato and Y. Oz, Integrability of Type II Superstrings on Ramond-Ramond Backgrounds in Various Dimensions, JHEP 06 (2007) 085 [hep-th/0702083] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K. Zarembo, Strings on Semisymmetric Superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP 04 (2002) 013.MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Park and S.-J. Rey, Green-Schwarz superstring on AdS 3 × S 3, JHEP 01 (1999) 001 [hep-th/9812062] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS 3 × S 3 Ramond-Ramond background in light cone gauge, J. Math. Phys. 42 (2001) 2987 [hep-th/0011191] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    C. Hull and B.J. Spence, The Gauged Nonlinear σ-model with Wess-Zumino Term, Phys. Lett. B 232 (1989) 204 [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189.MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    N. Beisert, V. Kazakov, K. Sakai and K. Zarembo, The Algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure, Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  35. [35]
    A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B 59 (1975) 79 [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    A. Polyakov, Conformal fixed points of unidentified gauge theories, Mod. Phys. Lett. A 19 (2004) 1649 [hep-th/0405106] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    D. Kagan and C.A. Young, Conformal σ-models on supercoset targets, Nucl. Phys. B 745 (2006) 109 [hep-th/0512250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    V.G.M. Puletti, Operator product expansion for pure spinor superstring on AdS 5 × S 5, JHEP 10 (2006) 057 [hep-th/0607076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L. Mazzucato and B.C. Vallilo, On the Non-renormalization of the AdS Radius, JHEP 09 (2009) 056 [arXiv:0906.4572] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M. Cvetič, H. Lü, C. Pope and K. Stelle, T duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. P. Veselov and L.A. Takhtajan, Integrability of the Novikov equations for principal chiral fields with a multivalued Lagrangian, Sov. Phys. Dokl. 29 (1984) 994.ADSGoogle Scholar
  43. [43]
    D. Orlando and L.I. Uruchurtu, Integrable Superstrings on the Squashed Three-sphere, JHEP 10 (2012) 007 [arXiv:1208.3680] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with Boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.ITEPMoscowRussia

Personalised recommendations