Journal of High Energy Physics

, 2012:132

Torsion and supersymmetry in Ω-background

Article

Abstract

We study the dimensional reduction of ten-dimensional super Yang-Mills theory in curved backgrounds with torsion. We examine the parallel spinor conditions and the constraints for the torsion parameters which preserve supersymmetry and gauge symmetry in four dimensions. In particular we examine the ten-dimensional Ω-background with the torsion which is identified with the R-symmetry Wilson line gauge fields. After the dimensional reduction, we obtain the Ω-deformed \(\mathcal{N}=4\) super Yang-Mills theory. Solving the parallel spinor conditions and the torsion constraints, we classify the deformed supersymmetry associated with the topological twist of \(\mathcal{N}=4\) supersymmetry. We also study deformed supersymmetries in the Nekrasov-Shatashvili limit.

Keywords

Extended Supersymmetry Space-Time Symmetries 

References

  1. [1]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, in From fields to strings, vol. I, M. Shifman et al. eds., (2003) 581 [hep-th/0302191] [INSPIRE].
  4. [4]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  5. [5]
    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, arXiv:1009.1126 [INSPIRE].
  8. [8]
    I. Antoniadis, S. Hohenegger, K. Narain and T. Taylor, Deformed topological partition function and Nekrasov backgrounds, Nucl. Phys. B 838 (2010) 253 [arXiv:1003.2832] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Y. Nakayama and H. Ooguri, Comments on worldsheet description of the Omega background, Nucl. Phys. B 856 (2012) 342 [arXiv:1106.5503] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Billó, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the topological string, JHEP 11 (2006) 012 [hep-th/0606013] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Ito, H. Nakajima, T. Saka and S. Sasaki, N = 2 instanton effective action in Ω-background and D3/D(−1)-brane system in RR background, JHEP 11 (2010) 093 [arXiv:1009.1212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    K. Ito, H. Nakajima, T. Saka and S. Sasaki, N = 4 instanton calculus in Omega and RR backgrounds, Nucl. Phys. B 860 (2012) 267 [arXiv:1111.6709] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, JHEP 03 (2012) 017 [arXiv:1004.1222] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.P. Yamron, Topological actions from twisted supersymmetric theories, Phys. Lett. B 213 (1988) 325 [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].
  19. [19]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).MATHCrossRefGoogle Scholar
  20. [20]
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    N. Marcus, The other topological twisting of N = 4 Yang-Mills, Nucl. Phys. B 452 (1995) 331 [hep-th/9506002] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Labastida and C. Lozano, Mass perturbations in twisted N = 4 supersymmetric gauge theories, Nucl. Phys. B 518 (1998) 37 [hep-th/9711132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    K. Ito, H. Nakajima and S. Sasaki, work in progress.Google Scholar
  25. [25]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, Erratum-ibid. 1210 (2012) 051 [Erratum ibid. 1210 (2012) 051] [arXiv:1206.6359] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D.L. Jafferis, Topological quiver matrix models and quantum foam, arXiv:0705.2250 [INSPIRE].
  29. [29]
    H. Awata and H. Kanno, Quiver matrix model and topological partition function in six dimensions, JHEP 07 (2009) 076 [arXiv:0905.0184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    N. Nekrasov, Instanton partition functions and M-theory, Japan. J. Math. 4 (2009) 63MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    M. Billó, L. Ferro, M. Frau, L. Gallot, A. Lerda, et al., Exotic instanton counting and heterotic/type-I-prime duality, JHEP 07 (2009) 092 [arXiv:0905.4586] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Fucito, J.F. Morales and R. Poghossian, Exotic prepotentials from D(−1)D7 dynamics, JHEP 10 (2009) 041 [arXiv:0906.3802] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Billó, L. Gallot, A. Lerda and I. Pesando, F-theoretic versus microscopic description of a conformal N = 2 SYM theory, JHEP 11 (2010) 041 [arXiv:1008.5240] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Ito, S. Kamoshita and S. Sasaki, BPS monopole equation in Omega-background, JHEP 04 (2011) 023 [arXiv:1103.2589] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    K. Ito, S. Kamoshita and S. Sasaki, Deformed BPS monopole in Omega-background, Phys. Lett. B 710 (2012) 240 [arXiv:1110.1455] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    S. Hellerman, D. Orlando and S. Reffert, The Omega deformation from string and M-theory, JHEP 07 (2012) 061 [arXiv:1204.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in Omega background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Physics and Center for Theoretical SciencesNational Taiwan UniversityTaipeiR.O.C
  3. 3.Department of PhysicsKitasato UniversitySagamiharaJapan

Personalised recommendations