Journal of High Energy Physics

, 2012:131

Fixed-Functionals of three-dimensional Quantum Einstein Gravity

  • Maximilian Demmel
  • Frank Saueressig
  • Omar Zanusso
Article

Abstract

We study the non-perturbative renormalization group flow of f (R)-gravity in three-dimensional Asymptotically Safe Quantum Einstein Gravity. Within the conformally reduced approximation, we derive an exact partial differential equation governing the RG-scale dependence of the function f (R). This equation is shown to possess two isolated and one continuous one-parameter family of scale-independent, regular solutions which constitute the natural generalization of RG fixed points to the realm of infinite-dimensional theory spaces. All solutions are bounded from below and give rise to positive definite kinetic terms. Moreover, they admit either one or two UV-relevant deformations, indicating that the corresponding UV-critical hypersurfaces remain finite dimensional despite the inclusion of an infinite number of coupling constants. The impact of our findings on the gravitational Asymptotic Safety program and its connection to new massive gravity is briefly discussed.

Keywords

Models of Quantum Gravity Nonperturbative Effects Renormalization Group 

References

  1. [1]
    S. Weinberg, Ultraviolet Divergences In Quantum Theories Of Gravitation, in General Relativity, an Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge, U.K. (1979). [INSPIRE]Google Scholar
  2. [2]
    S. Weinberg, What is quantum field theory and what did we think it is?, hep-th/9702027 [INSPIRE].
  3. [3]
    S. Weinberg, Living with Infinities, arXiv:0903.0568 [INSPIRE].
  4. [4]
    S. Weinberg, Effective Field Theory, Past and Future, PoS(CD09)001 [arXiv:0908.1964] [INSPIRE].
  5. [5]
    M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel. 9 (2006) 5.Google Scholar
  6. [6]
    M. Reuter and F. Saueressig, Functional Renormalization Group Equations, Asymptotic Safety and Quantum Einstein Gravity, arXiv:0708.1317 [INSPIRE].
  7. [7]
    R. Percacci, Asymptotic Safety, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, D. Oriti ed., Cambridge University Press, Cambridge, U.K. (2009) [arXiv:0709.3851] [INSPIRE].Google Scholar
  8. [8]
    D.F. Litim, Fixed Points of Quantum Gravity and the Renormalisation Group, PoS(QG-Ph)024 [arXiv:0810.3675] [INSPIRE].
  9. [9]
    M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys. G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys. 102 (1999) 181 [hep-th/9907027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?, Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    A. Bonanno, A. Contillo and R. Percacci, Inflationary solutions in asymptotically safe f(R) theories, Class. Quant. Grav. 28 (2011) 145026 [arXiv:1006.0192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Reuter and F. Saueressig, A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior, Phys. Rev. D 66 (2002) 125001 [hep-th/0206145] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    A. Codello, Polyakov Effective Action from Functional Renormalization Group Equation, Annals Phys. 325 (2010) 1727 [arXiv:1004.2171] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  35. [35]
    A. Satz, A. Codello and F. Mazzitelli, Low energy Quantum Gravity from the Effective Average Action, Phys. Rev. D 82 (2010) 084011 [arXiv:1006.3808] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity, Phys. Rev. D 80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Manrique, M. Reuter and F. Saueressig, Matter Induced Bimetric Actions for Gravity, Annals Phys. 326 (2011) 440 [arXiv:1003.5129] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    D. Becker and M. Reuter, Running boundary actions, Asymptotic Safety and black hole thermodynamics, JHEP 07 (2012) 172 [arXiv:1205.3583] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The Universal RG Machine, JHEP 06 (2011) 079 [arXiv:1012.3081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher Derivative Gravity from the Universal Renormalization Group Machine, PoS(EPS-HEP2011)124 [arXiv:1111.1743] [INSPIRE].
  44. [44]
    A. Nink and M. Reuter, On the physical mechanism underlying Asymptotic Safety, arXiv:1208.0031 [INSPIRE].
  45. [45]
    I. Donkin and J.M. Pawlowski, The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].
  46. [46]
    S. Nagy, J. Krizsan and K. Sailer, Infrared fixed point in quantum Einstein gravity, JHEP 07 (2012) 102 [arXiv:1203.6564] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Litim and A. Satz, Limit cycles and quantum gravity, arXiv:1205.4218 [INSPIRE].
  48. [48]
    T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395 [hep-th/9802039] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: A Derivative expansion at order ∂ 4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D.F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83 (2011) 085009 [arXiv:1009.1948] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Flore, A. Wipf and O. Zanusso, Functional renormalization group of the non-linear σ-model and the O(N) universality class, arXiv:1207.4499 [INSPIRE].
  53. [53]
    A. Codello, Scaling Solutions in Continuous Dimension, J. Phys. A 45 (2012) 465006 [arXiv:1204.3877] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, One-loop f(R) gravity in de Sitter universe, JCAP 02 (2005) 010 [hep-th/0501096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    D. Benedetti and F. Caravelli, The Local potential approximation in quantum gravity, JHEP 06 (2012) 017 [Erratum ibid. 1210 (2012) 157] [arXiv:1204.3541] [INSPIRE].
  56. [56]
    M. Reuter and H. Weyer, Background Independence and Asymptotic Safety in Conformally Reduced Gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Reuter and H. Weyer, Conformal sector of Quantum Einstein Gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Reuter and H. Weyer, The Role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity, Gen. Rel. Grav. 41 (2009) 983 [arXiv:0903.2971] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited, Phys. Rev. D 80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Bonanno, F. Guarnieri and F. Guarnieri, Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity, arXiv:1206.6531 [INSPIRE].
  61. [61]
    I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. M 64 (2000) 1.MathSciNetGoogle Scholar
  62. [62]
    G.t. Hooft, The Conformal Constraint in Canonical Quantum Gravity, arXiv:1011.0061 [INSPIRE].
  63. [63]
    K. Groh, F. Saueressig and O. Zanusso, Off-diagonal heat-kernel expansion and its application to fields with differential constraints, arXiv:1112.4856 [INSPIRE].
  64. [64]
    A. Codello and O. Zanusso, On the non-local heat kernel expansion, arXiv:1203.2034 [INSPIRE].
  65. [65]
    G.A. Vilkovisky, Heat kernel: rencontre entre physiciens et mathmaticiens, CERN-TH-6392-92 (1992).
  66. [66]
    J. Dowker and R. Critchley, Effective Lagrangian and Energy Momentum Tensor in de Sitter Space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Rahmede, Old and new results from the Wilsonian approach to gravity, PoS(CLAQG08)011.
  69. [69]
    G. Narain and C. Rahmede, Renormalization Group Flow in Scalar-Tensor Theories. II, Class. Quant. Grav. 27 (2010) 075002 [arXiv:0911.0394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  72. [72]
    N. Ohta, β-function and Asymptotic Safety in Three-dimensional Higher Derivative Gravity, Class. Quant. Grav. 29 (2012) 205012 [arXiv:1205.0476] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Codello, Large-N Quantum Gravity, New J. Phys. 14 (2012) 015009 [arXiv:1108.1908] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Maximilian Demmel
    • 1
  • Frank Saueressig
    • 1
  • Omar Zanusso
    • 1
  1. 1.PRISMA Cluster of Excellence & Institute of Physics (THEP)University of MainzMainzGermany

Personalised recommendations