Journal of High Energy Physics

, 2012:130 | Cite as

Higgs uncovering light scalar remnants of high scale matter unification

  • Ilja Doršner
  • Svjetlana Fajfer
  • Admir Greljo
  • Jernej F. Kamenik
Article

Abstract

We consider the impact of colored scalars that can couple directly to matter fields on the recently measured hγγ excess. Among all possible candidates only scalar states transforming as (8, 2, 1/2) and (\( \overline{\mathbf{6}} \), 3, −1/3) under the Standard Model gauge group can individually accommodate the excess and remain in agreement with all available data. Current experimental constraints require such colored states to have an order one coupling to the Standard Model Higgs and a mass below 300 GeV. We use the best fit values to predict the correlated effect in h and di-Higgs production. We furthermore discuss where and how these states appear in extensions of the Standard Model with primary focus on scenarios of matter unification. We revisit two simple SU(5) setups to show that these two full-fledged models not only accommodate a light color octet state but correlate its mass with observable partial proton decay lifetimes.

Keywords

Higgs Physics Beyond Standard Model GUT 

References

  1. [1]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].
  2. [2]
    J. Shu, T.M. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [INSPIRE].ADSGoogle Scholar
  3. [3]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in \( t\overline{t} \) production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [INSPIRE].ADSGoogle Scholar
  5. [5]
    I. Dorsner, J. Drobnak, S. Fajfer, J.F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, JHEP 11 (2011) 002 [arXiv:1107.5393] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W. Altmannshofer, R. Primulando, C.-T. Yu and F. Yu, New physics models of direct CP-violation in charm decays, JHEP 04 (2012) 049 [arXiv:1202.2866] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.M. Barr and X. Calmet, Observable proton decay from Planck scale physics, arXiv:1203.5694 [INSPIRE].
  8. [8]
    P. Fileviez Perez and M.B. Wise, On the origin of neutrino masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].ADSGoogle Scholar
  9. [9]
    I. Dorsner and P. Fileviez Perez, Unification without supersymmetry: neutrino mass, proton decay and light leptoquarks, Nucl. Phys. B 723 (2005) 53 [hep-ph/0504276] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Dorsner and P. Fileviez Perez, Unification versus proton decay in SU(5), Phys. Lett. B 642 (2006) 248 [hep-ph/0606062] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Dorsner and I. Mocioiu, Predictions from type-II see-saw mechanism in SU(5), Nucl. Phys. B 796 (2008) 123 [arXiv:0708.3332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton stability, dark matter and light color octet scalars in adjoint SU(5) unification, Phys. Rev. D 78 (2008) 015013 [arXiv:0803.4156] [INSPIRE].ADSGoogle Scholar
  13. [13]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in \( t\overline{t} \) production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D.C. Stone and P. Uttayarat, Explaining the \( t\overline{t} \) forward-backward asymmetry from a GUT-inspired model, JHEP 01 (2012) 096 [arXiv:1111.2050] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Bertolini, L. Di Luzio and M. Malinsky, Seesaw scale in the minimal renormalizable SO(10) grand unification, Phys. Rev. D 85 (2012) 095014 [arXiv:1202.0807] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Babu and R. Mohapatra, Coupling unification, GUT-scale baryogenesis and neutron-antineutron oscillation in SO(10), Phys. Lett. B 715 (2012) 328 [arXiv:1206.5701] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K. Babu and R. Mohapatra, B-L violating proton decay modes and new baryogenesis scenario in SO(10), Phys. Rev. Lett. 109 (2012) 091803 [arXiv:1207.5771] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalar as messenger of up-quark flavor dynamics in grand unified theories, Phys. Rev. D 82 (2010) 094015 [arXiv:1007.2604] [INSPIRE].ADSGoogle Scholar
  20. [20]
    I. Dorsner, J. Drobnak, S. Fajfer, J.F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, JHEP 11 (2011) 002 [arXiv:1107.5393] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  22. [22]
    W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].
  24. [24]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].
  25. [25]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 V.ADSCrossRefGoogle Scholar
  30. [30]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS collaboration, F. Giannotti Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, CERN Seminar, July 4, 2012, ATLAS-CONF-2012-093.
  32. [32]
    CMS collaboration, J. Incandela, Update on the Higgs boson searches at the LHC, CERN Seminar, July 4, 2012 http://cdsweb.cern.ch/record/1459513.
  33. [33]
    CDF and D0 collaborations, E. James and W. Fisher, CDF and D0 Higgs results with the full Tevatron dataset, talk given at the Tevatron Higgs Seminar, July 2, 2012, tevnphwg.fnal.gov/results/SM_Higgs…12/jul02_wine_cheese.pdf.
  34. [34]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008 (2012).
  35. [35]
    CMS collaboration, Search for the Higgs boson in the fully leptonic w + w final state, PAS-HIG-11-024 (2011).
  36. [36]
    ATLAS and CMS collaborations, SM scalar boson search with ATLAS and CMS, talk given at Moriond 2012 EW session, March 7, 2012.Google Scholar
  37. [37]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSGoogle Scholar
  38. [38]
    CMS collaboration, Search for the fermiophobic model Higgs boson decaying into two photons, PAS-HIG-12-002 (2012).
  39. [39]
    O. Arnaez, Searches for the SM scalar boson in the WW decay channel with the ATLAS experiment, talk given at Higgs Hunting 2012, July 18, 2012, Orsay France.Google Scholar
  40. [40]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  41. [41]
    B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, arXiv:1207.4496 [INSPIRE].
  43. [43]
    G. Marques Tavares and M. Schmaltz, Explaining the \( t\overline{t} \) asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping \( t\overline{t} \) asymmetries at the Tevatron and the LHC, Phys. Rev. D 86 (2012) 054022 [arXiv:1205.4721] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].
  46. [46]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405] [INSPIRE].ADSGoogle Scholar
  50. [50]
    E.N. Glover and J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M.I. Gresham and M.B. Wise, Color octet scalar production at the LHC, Phys. Rev. D 76 (2007) 075003 [arXiv:0706.0909] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.M. Arnold and B. Fornal, Color octet scalars and high pT four-jet events at LHC, Phys. Rev. D 85 (2012) 055020 [arXiv:1112.0003] [INSPIRE].ADSGoogle Scholar
  54. [54]
    Y. Bai, J. Fan and J.L. Hewett, Hiding a heavy Higgs boson at the 7 TeV LHC, JHEP 08 (2012) 014 [arXiv:1112.1964] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Kumar, R. Vega-Morales and F. Yu, Effects from new colored states and the Higgs portal on gluon fusion and Higgs decays, arXiv:1205.4244 [INSPIRE].
  56. [56]
    P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [INSPIRE].ADSGoogle Scholar
  57. [57]
    H. Georgi and C. Jarlskog, A new lepton - Quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSGoogle Scholar
  58. [58]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Miura, Search for nucleon decays in Super-Kamiokande PoS ICHEP 2010 (2010) 408.Google Scholar
  60. [60]
    Super-Kamiokande collaboration, H. Nishino et al., Search for nucleon decay into charged anti-lepton plus meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].ADSGoogle Scholar
  61. [61]
    I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys. Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  63. [63]
    RBC-UKQCD collaboration, Y. Aoki et al., Proton lifetime bounds from chirally symmetric lattice QCD, Phys. Rev. D 78 (2008) 054505 [arXiv:0806.1031] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Ilja Doršner
    • 1
    • 3
  • Svjetlana Fajfer
    • 3
    • 2
  • Admir Greljo
    • 2
  • Jernej F. Kamenik
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.J. Stefan InstituteLjubljanaSlovenia
  3. 3.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations